Update models/loaders/model_loader.py
Browse files- models/loaders/model_loader.py +120 -263
models/loaders/model_loader.py
CHANGED
|
@@ -1,74 +1,51 @@
|
|
|
|
|
| 1 |
"""
|
| 2 |
Model Loading Module
|
| 3 |
-
Handles loading and validation of SAM2 and
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
-
# ============================================================================
|
| 7 |
# IMPORTS AND DEPENDENCIES
|
| 8 |
-
# ============================================================================
|
| 9 |
-
|
| 10 |
import os
|
| 11 |
import gc
|
| 12 |
import sys
|
| 13 |
import time
|
| 14 |
-
import shutil
|
| 15 |
import logging
|
| 16 |
-
import tempfile
|
| 17 |
import traceback
|
| 18 |
-
from typing import Optional, Dict, Any, Tuple, Union
|
| 19 |
from pathlib import Path
|
|
|
|
| 20 |
|
| 21 |
import torch
|
| 22 |
-
from omegaconf import DictConfig, OmegaConf
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
from core.exceptions import ModelLoadingError
|
| 26 |
-
from utils.hardware.device_manager import DeviceManager
|
| 27 |
-
from utils.system.memory_manager import MemoryManager
|
| 28 |
|
| 29 |
logger = logging.getLogger(__name__)
|
| 30 |
|
| 31 |
-
# ============================================================================
|
| 32 |
-
#
|
| 33 |
-
# ============================================================================
|
| 34 |
-
|
| 35 |
-
class LoadedModel:
|
| 36 |
-
"""Container for a loaded model with metadata"""
|
| 37 |
-
def __init__(self, model=None, model_id: str = "", load_time: float = 0.0):
|
| 38 |
-
self.model = model
|
| 39 |
-
self.model_id = model_id
|
| 40 |
-
self.load_time = load_time
|
| 41 |
-
self.device = None
|
| 42 |
-
self.framework = None
|
| 43 |
-
|
| 44 |
-
def __repr__(self):
|
| 45 |
-
return f"LoadedModel(id={self.model_id}, loaded={self.model is not None})"
|
| 46 |
-
|
| 47 |
-
# ============================================================================ #
|
| 48 |
-
# MODEL LOADER CLASS - MAIN INTERFACE
|
| 49 |
-
# ============================================================================ #
|
| 50 |
-
|
| 51 |
class ModelLoader:
|
| 52 |
"""
|
| 53 |
-
|
| 54 |
-
|
| 55 |
"""
|
| 56 |
-
|
| 57 |
def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
| 58 |
self.device_manager = device_mgr
|
| 59 |
self.memory_manager = memory_mgr
|
| 60 |
self.device = self.device_manager.get_optimal_device()
|
| 61 |
-
|
| 62 |
-
# Model storage
|
| 63 |
self.sam2_predictor = None
|
| 64 |
-
self.matanyone_model = None
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
# Configuration paths
|
| 68 |
self.checkpoints_dir = "./checkpoints"
|
| 69 |
os.makedirs(self.checkpoints_dir, exist_ok=True)
|
| 70 |
-
|
| 71 |
-
# Model loading statistics
|
| 72 |
self.loading_stats = {
|
| 73 |
'sam2_load_time': 0.0,
|
| 74 |
'matanyone_load_time': 0.0,
|
|
@@ -76,111 +53,90 @@ def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
|
| 76 |
'models_loaded': False,
|
| 77 |
'loading_attempts': 0
|
| 78 |
}
|
| 79 |
-
|
| 80 |
-
logger.info(f"ModelLoader initialized for device: {self.device}")
|
| 81 |
|
| 82 |
-
|
| 83 |
-
# MAIN MODEL LOADING ORCHESTRATION
|
| 84 |
-
# ============================================================================ #
|
| 85 |
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
| 87 |
"""
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
Args:
|
| 91 |
-
progress_callback: Progress update callback
|
| 92 |
-
cancel_event: Event to check for cancellation
|
| 93 |
-
|
| 94 |
-
Returns:
|
| 95 |
-
Tuple of (sam2_predictor, matanyone_model)
|
| 96 |
"""
|
| 97 |
start_time = time.time()
|
| 98 |
self.loading_stats['loading_attempts'] += 1
|
| 99 |
-
|
| 100 |
try:
|
| 101 |
logger.info("Starting model loading process...")
|
| 102 |
if progress_callback:
|
| 103 |
progress_callback(0.0, "Initializing model loading...")
|
| 104 |
-
|
| 105 |
-
# Clear any existing models
|
| 106 |
self._cleanup_models()
|
| 107 |
-
|
| 108 |
# Load SAM2 first
|
| 109 |
logger.info("Loading SAM2 predictor...")
|
| 110 |
if progress_callback:
|
| 111 |
progress_callback(0.1, "Loading SAM2 predictor...")
|
| 112 |
-
|
| 113 |
self.sam2_predictor = self._load_sam2_predictor(progress_callback)
|
| 114 |
-
|
| 115 |
if self.sam2_predictor is None:
|
| 116 |
logger.warning("SAM2 loading failed - will use fallback segmentation")
|
| 117 |
else:
|
| 118 |
sam2_time = time.time() - start_time
|
| 119 |
self.loading_stats['sam2_load_time'] = sam2_time
|
| 120 |
logger.info(f"SAM2 loaded in {sam2_time:.2f}s")
|
| 121 |
-
|
| 122 |
-
# Load
|
| 123 |
-
logger.info("Loading
|
| 124 |
if progress_callback:
|
| 125 |
-
progress_callback(0.6, "Loading
|
| 126 |
-
|
| 127 |
matanyone_start = time.time()
|
| 128 |
-
|
| 129 |
-
self.matanyone_model
|
| 130 |
-
|
| 131 |
if self.matanyone_model is None:
|
| 132 |
-
logger.warning("
|
| 133 |
else:
|
| 134 |
matanyone_time = time.time() - matanyone_start
|
| 135 |
self.loading_stats['matanyone_load_time'] = matanyone_time
|
| 136 |
-
logger.info(f"
|
| 137 |
-
|
| 138 |
-
# Final
|
| 139 |
total_time = time.time() - start_time
|
| 140 |
self.loading_stats['total_load_time'] = total_time
|
| 141 |
self.loading_stats['models_loaded'] = True
|
| 142 |
-
|
| 143 |
if progress_callback:
|
| 144 |
if self.sam2_predictor or self.matanyone_model:
|
| 145 |
progress_callback(1.0, "Models loaded (with fallbacks available)")
|
| 146 |
else:
|
| 147 |
progress_callback(1.0, "Using fallback methods (models failed to load)")
|
| 148 |
-
|
| 149 |
logger.info(f"Model loading completed in {total_time:.2f}s")
|
| 150 |
-
|
| 151 |
return self.sam2_predictor, self.matanyone_model
|
| 152 |
-
|
| 153 |
except Exception as e:
|
| 154 |
error_msg = f"Model loading failed: {str(e)}"
|
| 155 |
logger.error(f"{error_msg}\n{traceback.format_exc()}")
|
| 156 |
-
|
| 157 |
-
# Cleanup on failure
|
| 158 |
self._cleanup_models()
|
| 159 |
self.loading_stats['models_loaded'] = False
|
| 160 |
-
|
| 161 |
if progress_callback:
|
| 162 |
progress_callback(1.0, f"Error: {error_msg}")
|
| 163 |
-
|
| 164 |
return None, None
|
| 165 |
|
| 166 |
-
# ============================================================================
|
| 167 |
-
# SAM2
|
| 168 |
-
# ============================================================================
|
| 169 |
-
|
| 170 |
-
def _load_sam2_predictor(self, progress_callback: Optional[callable] = None):
|
| 171 |
"""
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
Args:
|
| 175 |
-
progress_callback: Progress update callback
|
| 176 |
-
|
| 177 |
-
Returns:
|
| 178 |
-
SAM2 predictor or None
|
| 179 |
"""
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
try:
|
| 184 |
memory_gb = self.device_manager.get_device_memory_gb()
|
| 185 |
if memory_gb < 4:
|
| 186 |
model_size = "tiny"
|
|
@@ -189,139 +145,98 @@ def _load_sam2_predictor(self, progress_callback: Optional[callable] = None):
|
|
| 189 |
elif memory_gb < 12:
|
| 190 |
model_size = "base"
|
| 191 |
logger.info(f"Selected SAM2 {model_size} based on {memory_gb}GB memory")
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
model_map = {
|
| 196 |
"tiny": "facebook/sam2.1-hiera-tiny",
|
| 197 |
-
"small": "facebook/sam2.1-hiera-small",
|
| 198 |
"base": "facebook/sam2.1-hiera-base-plus",
|
| 199 |
"large": "facebook/sam2.1-hiera-large"
|
| 200 |
}
|
| 201 |
-
|
| 202 |
model_id = model_map.get(model_size, model_map["large"])
|
| 203 |
-
|
| 204 |
if progress_callback:
|
| 205 |
progress_callback(0.3, f"Loading SAM2 {model_size} model...")
|
| 206 |
-
|
| 207 |
-
# Use ONLY the official SAM2 from_pretrained method that works
|
| 208 |
try:
|
| 209 |
-
logger.info(f"Loading SAM2 from {model_id}...")
|
| 210 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 211 |
-
|
| 212 |
-
# This is the method that successfully downloads and loads the model
|
| 213 |
predictor = SAM2ImagePredictor.from_pretrained(model_id)
|
| 214 |
-
|
| 215 |
-
# Move to correct device if needed
|
| 216 |
if hasattr(predictor, 'model'):
|
| 217 |
predictor.model = predictor.model.to(self.device)
|
| 218 |
-
|
| 219 |
logger.info("SAM2 loaded successfully via official from_pretrained")
|
| 220 |
return predictor
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
logger.error(f"SAM2 module not found. Install with: pip install sam2")
|
| 224 |
return None
|
| 225 |
-
|
| 226 |
except Exception as e:
|
| 227 |
logger.error(f"SAM2 loading failed: {e}")
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
checkpoint_path = os.path.join(self.checkpoints_dir, f"sam2.1_hiera_{model_size}.pt")
|
| 235 |
-
|
| 236 |
-
if not os.path.exists(checkpoint_path):
|
| 237 |
-
logger.info(f"Downloading checkpoint from {checkpoint_url}")
|
| 238 |
-
urllib.request.urlretrieve(checkpoint_url, checkpoint_path)
|
| 239 |
-
|
| 240 |
-
# Try loading with downloaded checkpoint
|
| 241 |
-
predictor = SAM2ImagePredictor.from_pretrained(model_id, checkpoint=checkpoint_path)
|
| 242 |
-
logger.info("SAM2 loaded successfully with manual checkpoint")
|
| 243 |
-
return predictor
|
| 244 |
-
|
| 245 |
-
except Exception as fallback_error:
|
| 246 |
-
logger.error(f"Manual checkpoint fallback also failed: {fallback_error}")
|
| 247 |
-
return None
|
| 248 |
-
|
| 249 |
-
# ============================================================================ #
|
| 250 |
-
# MATANYONE MODEL LOADING
|
| 251 |
-
# ============================================================================ #
|
| 252 |
-
|
| 253 |
-
def _load_matanyone_model(self, progress_callback: Optional[callable] = None):
|
| 254 |
"""
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
"""
|
| 263 |
try:
|
| 264 |
-
logger.info("Loading MatAnyone from HuggingFace...")
|
| 265 |
if progress_callback:
|
| 266 |
-
progress_callback(0.7, "Loading
|
| 267 |
-
|
|
|
|
| 268 |
from matanyone import InferenceCore
|
| 269 |
-
|
| 270 |
-
#
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
except ImportError:
|
| 277 |
-
logger.error("
|
| 278 |
-
return None
|
| 279 |
-
|
| 280 |
except Exception as e:
|
| 281 |
-
logger.error(f"
|
| 282 |
-
return None
|
| 283 |
-
|
| 284 |
-
# ============================================================================ #
|
| 285 |
-
# MODEL MANAGEMENT AND CLEANUP
|
| 286 |
-
# ============================================================================ #
|
| 287 |
|
|
|
|
|
|
|
|
|
|
| 288 |
def _cleanup_models(self):
|
| 289 |
-
"""Clean up loaded models and free memory"""
|
| 290 |
if self.sam2_predictor is not None:
|
| 291 |
del self.sam2_predictor
|
| 292 |
self.sam2_predictor = None
|
| 293 |
-
|
| 294 |
if self.matanyone_model is not None:
|
| 295 |
del self.matanyone_model
|
| 296 |
self.matanyone_model = None
|
| 297 |
-
|
| 298 |
-
if self.matanyone_core is not None:
|
| 299 |
-
del self.matanyone_core
|
| 300 |
-
self.matanyone_core = None
|
| 301 |
-
|
| 302 |
-
# Clear GPU cache
|
| 303 |
if torch.cuda.is_available():
|
| 304 |
torch.cuda.empty_cache()
|
| 305 |
gc.collect()
|
| 306 |
-
|
| 307 |
logger.debug("Model cleanup completed")
|
| 308 |
-
|
| 309 |
def cleanup(self):
|
| 310 |
-
"""Clean up all resources"""
|
| 311 |
self._cleanup_models()
|
| 312 |
logger.info("ModelLoader cleanup completed")
|
| 313 |
|
| 314 |
-
# ============================================================================
|
| 315 |
-
# MODEL
|
| 316 |
-
# ============================================================================
|
| 317 |
-
|
| 318 |
def get_model_info(self) -> Dict[str, Any]:
|
| 319 |
-
"""
|
| 320 |
-
Get information about loaded models
|
| 321 |
-
|
| 322 |
-
Returns:
|
| 323 |
-
Dict with model information and statistics
|
| 324 |
-
"""
|
| 325 |
info = {
|
| 326 |
'models_loaded': self.loading_stats['models_loaded'],
|
| 327 |
'sam2_loaded': self.sam2_predictor is not None,
|
|
@@ -329,118 +244,60 @@ def get_model_info(self) -> Dict[str, Any]:
|
|
| 329 |
'device': str(self.device),
|
| 330 |
'loading_stats': self.loading_stats.copy()
|
| 331 |
}
|
| 332 |
-
|
| 333 |
if self.sam2_predictor is not None:
|
| 334 |
-
|
| 335 |
-
info['sam2_model_type'] = type(self.sam2_predictor).__name__
|
| 336 |
-
if hasattr(self.sam2_predictor, 'model'):
|
| 337 |
-
info['sam2_has_model'] = True
|
| 338 |
-
if hasattr(self.sam2_predictor, 'predictor'):
|
| 339 |
-
info['sam2_has_predictor'] = True
|
| 340 |
-
except:
|
| 341 |
-
info['sam2_model_type'] = "Unknown"
|
| 342 |
-
|
| 343 |
if self.matanyone_model is not None:
|
| 344 |
-
|
| 345 |
-
info['matanyone_model_type'] = type(self.matanyone_model).__name__
|
| 346 |
-
except:
|
| 347 |
-
info['matanyone_model_type'] = "Unknown"
|
| 348 |
-
|
| 349 |
return info
|
| 350 |
-
|
| 351 |
-
def get_status(self) -> Dict[str, Any]:
|
| 352 |
-
"""Get model loader status for backward compatibility"""
|
| 353 |
-
return self.get_model_info()
|
| 354 |
-
|
| 355 |
def get_load_summary(self) -> str:
|
| 356 |
-
"""Get a human-readable summary of model loading"""
|
| 357 |
if not self.loading_stats['models_loaded']:
|
| 358 |
return "Models not loaded"
|
| 359 |
-
|
| 360 |
sam2_time = self.loading_stats['sam2_load_time']
|
| 361 |
matanyone_time = self.loading_stats['matanyone_load_time']
|
| 362 |
total_time = self.loading_stats['total_load_time']
|
| 363 |
-
|
| 364 |
summary = f"Models loaded in {total_time:.1f}s\n"
|
| 365 |
-
|
| 366 |
if self.sam2_predictor:
|
| 367 |
summary += f"✓ SAM2: {sam2_time:.1f}s\n"
|
| 368 |
else:
|
| 369 |
summary += f"✗ SAM2: Failed (using fallback)\n"
|
| 370 |
-
|
| 371 |
if self.matanyone_model:
|
| 372 |
-
summary += f"✓
|
| 373 |
else:
|
| 374 |
-
summary += f"✗
|
| 375 |
-
|
| 376 |
summary += f"Device: {self.device}"
|
| 377 |
-
|
| 378 |
return summary
|
| 379 |
-
|
| 380 |
def get_matanyone(self):
|
| 381 |
-
"""Get MatAnyone model for backward compatibility"""
|
| 382 |
return self.matanyone_model
|
| 383 |
-
|
| 384 |
def get_sam2(self):
|
| 385 |
-
"""Get SAM2 predictor for backward compatibility"""
|
| 386 |
return self.sam2_predictor
|
| 387 |
|
| 388 |
-
# ============================================================================ #
|
| 389 |
-
# MODEL VALIDATION AND TESTING
|
| 390 |
-
# ============================================================================ #
|
| 391 |
-
|
| 392 |
def validate_models(self) -> bool:
|
| 393 |
-
"""
|
| 394 |
-
Validate that models are properly loaded and functional
|
| 395 |
-
|
| 396 |
-
Returns:
|
| 397 |
-
bool: True if at least one model is valid
|
| 398 |
-
"""
|
| 399 |
try:
|
| 400 |
has_valid_model = False
|
| 401 |
-
|
| 402 |
-
# Check SAM2
|
| 403 |
if self.sam2_predictor is not None:
|
| 404 |
-
# Check for required methods/attributes
|
| 405 |
if hasattr(self.sam2_predictor, 'set_image') or hasattr(self.sam2_predictor, 'predict'):
|
| 406 |
has_valid_model = True
|
| 407 |
-
logger.info("SAM2 validation passed")
|
| 408 |
-
elif hasattr(self.sam2_predictor, 'model'):
|
| 409 |
-
has_valid_model = True
|
| 410 |
-
logger.info("SAM2 model found")
|
| 411 |
-
|
| 412 |
-
# Check MatAnyone
|
| 413 |
if self.matanyone_model is not None:
|
| 414 |
has_valid_model = True
|
| 415 |
-
logger.info("MatAnyone validation passed")
|
| 416 |
-
|
| 417 |
return has_valid_model
|
| 418 |
-
|
| 419 |
except Exception as e:
|
| 420 |
logger.error(f"Model validation failed: {e}")
|
| 421 |
return False
|
| 422 |
|
| 423 |
-
|
| 424 |
-
# UTILITY METHODS
|
| 425 |
-
# ============================================================================ #
|
| 426 |
-
|
| 427 |
-
def reload_models(self, progress_callback: Optional[callable] = None) -> Tuple[Any, Any]:
|
| 428 |
-
"""
|
| 429 |
-
Reload all models (useful for error recovery)
|
| 430 |
-
|
| 431 |
-
Args:
|
| 432 |
-
progress_callback: Progress update callback
|
| 433 |
-
|
| 434 |
-
Returns:
|
| 435 |
-
Tuple of (sam2_predictor, matanyone_model)
|
| 436 |
-
"""
|
| 437 |
logger.info("Reloading models...")
|
| 438 |
self._cleanup_models()
|
| 439 |
self.loading_stats['models_loaded'] = False
|
| 440 |
-
|
| 441 |
return self.load_all_models(progress_callback)
|
| 442 |
-
|
| 443 |
@property
|
| 444 |
def models_ready(self) -> bool:
|
| 445 |
-
|
| 446 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
Model Loading Module
|
| 4 |
+
Handles loading and validation of SAM2 and MatAnyOne AI models
|
| 5 |
+
(Modern version for BackgroundFX Pro – only edit this file for model loading logic)
|
| 6 |
"""
|
| 7 |
|
| 8 |
+
# ============================================================================
|
| 9 |
# IMPORTS AND DEPENDENCIES
|
| 10 |
+
# ============================================================================
|
|
|
|
| 11 |
import os
|
| 12 |
import gc
|
| 13 |
import sys
|
| 14 |
import time
|
|
|
|
| 15 |
import logging
|
|
|
|
| 16 |
import traceback
|
|
|
|
| 17 |
from pathlib import Path
|
| 18 |
+
from typing import Optional, Dict, Any, Tuple, Callable
|
| 19 |
|
| 20 |
import torch
|
|
|
|
| 21 |
|
| 22 |
+
# Modular dependencies (adapt as your structure changes)
|
| 23 |
+
from core.exceptions import ModelLoadingError
|
| 24 |
+
from utils.hardware.device_manager import DeviceManager
|
| 25 |
+
from utils.system.memory_manager import MemoryManager
|
| 26 |
|
| 27 |
logger = logging.getLogger(__name__)
|
| 28 |
|
| 29 |
+
# ============================================================================
|
| 30 |
+
# MODEL LOADER CLASS
|
| 31 |
+
# ============================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
class ModelLoader:
|
| 33 |
"""
|
| 34 |
+
Loads and manages SAM2 and MatAnyOne models.
|
| 35 |
+
Tune all model-specific logic/settings here.
|
| 36 |
"""
|
| 37 |
+
|
| 38 |
def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
| 39 |
self.device_manager = device_mgr
|
| 40 |
self.memory_manager = memory_mgr
|
| 41 |
self.device = self.device_manager.get_optimal_device()
|
| 42 |
+
|
|
|
|
| 43 |
self.sam2_predictor = None
|
| 44 |
+
self.matanyone_model = None # This is usually InferenceCore
|
| 45 |
+
|
|
|
|
|
|
|
| 46 |
self.checkpoints_dir = "./checkpoints"
|
| 47 |
os.makedirs(self.checkpoints_dir, exist_ok=True)
|
| 48 |
+
|
|
|
|
| 49 |
self.loading_stats = {
|
| 50 |
'sam2_load_time': 0.0,
|
| 51 |
'matanyone_load_time': 0.0,
|
|
|
|
| 53 |
'models_loaded': False,
|
| 54 |
'loading_attempts': 0
|
| 55 |
}
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
logger.info(f"ModelLoader initialized for device: {self.device}")
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
# ============================================================================
|
| 60 |
+
# MAIN LOADING FUNCTION (ORCHESTRATION)
|
| 61 |
+
# ============================================================================
|
| 62 |
+
def load_all_models(self, progress_callback: Optional[Callable] = None, cancel_event=None) -> Tuple[Any, Any]:
|
| 63 |
"""
|
| 64 |
+
Loads both SAM2 and MatAnyOne models with error handling.
|
| 65 |
+
Returns: (sam2_predictor, matanyone_model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
"""
|
| 67 |
start_time = time.time()
|
| 68 |
self.loading_stats['loading_attempts'] += 1
|
| 69 |
+
|
| 70 |
try:
|
| 71 |
logger.info("Starting model loading process...")
|
| 72 |
if progress_callback:
|
| 73 |
progress_callback(0.0, "Initializing model loading...")
|
| 74 |
+
|
|
|
|
| 75 |
self._cleanup_models()
|
| 76 |
+
|
| 77 |
# Load SAM2 first
|
| 78 |
logger.info("Loading SAM2 predictor...")
|
| 79 |
if progress_callback:
|
| 80 |
progress_callback(0.1, "Loading SAM2 predictor...")
|
|
|
|
| 81 |
self.sam2_predictor = self._load_sam2_predictor(progress_callback)
|
| 82 |
+
|
| 83 |
if self.sam2_predictor is None:
|
| 84 |
logger.warning("SAM2 loading failed - will use fallback segmentation")
|
| 85 |
else:
|
| 86 |
sam2_time = time.time() - start_time
|
| 87 |
self.loading_stats['sam2_load_time'] = sam2_time
|
| 88 |
logger.info(f"SAM2 loaded in {sam2_time:.2f}s")
|
| 89 |
+
|
| 90 |
+
# Load MatAnyOne
|
| 91 |
+
logger.info("Loading MatAnyOne model...")
|
| 92 |
if progress_callback:
|
| 93 |
+
progress_callback(0.6, "Loading MatAnyOne model...")
|
|
|
|
| 94 |
matanyone_start = time.time()
|
| 95 |
+
|
| 96 |
+
self.matanyone_model = self._load_matanyone_model(progress_callback)
|
| 97 |
+
|
| 98 |
if self.matanyone_model is None:
|
| 99 |
+
logger.warning("MatAnyOne loading failed - will use OpenCV refinement")
|
| 100 |
else:
|
| 101 |
matanyone_time = time.time() - matanyone_start
|
| 102 |
self.loading_stats['matanyone_load_time'] = matanyone_time
|
| 103 |
+
logger.info(f"MatAnyOne loaded in {matanyone_time:.1f}s")
|
| 104 |
+
|
| 105 |
+
# Final status
|
| 106 |
total_time = time.time() - start_time
|
| 107 |
self.loading_stats['total_load_time'] = total_time
|
| 108 |
self.loading_stats['models_loaded'] = True
|
| 109 |
+
|
| 110 |
if progress_callback:
|
| 111 |
if self.sam2_predictor or self.matanyone_model:
|
| 112 |
progress_callback(1.0, "Models loaded (with fallbacks available)")
|
| 113 |
else:
|
| 114 |
progress_callback(1.0, "Using fallback methods (models failed to load)")
|
| 115 |
+
|
| 116 |
logger.info(f"Model loading completed in {total_time:.2f}s")
|
| 117 |
+
|
| 118 |
return self.sam2_predictor, self.matanyone_model
|
| 119 |
+
|
| 120 |
except Exception as e:
|
| 121 |
error_msg = f"Model loading failed: {str(e)}"
|
| 122 |
logger.error(f"{error_msg}\n{traceback.format_exc()}")
|
|
|
|
|
|
|
| 123 |
self._cleanup_models()
|
| 124 |
self.loading_stats['models_loaded'] = False
|
|
|
|
| 125 |
if progress_callback:
|
| 126 |
progress_callback(1.0, f"Error: {error_msg}")
|
|
|
|
| 127 |
return None, None
|
| 128 |
|
| 129 |
+
# ============================================================================
|
| 130 |
+
# SAM2 LOADING (OFFICIAL FROM_PRETRAINED)
|
| 131 |
+
# ============================================================================
|
| 132 |
+
def _load_sam2_predictor(self, progress_callback: Optional[Callable] = None):
|
|
|
|
| 133 |
"""
|
| 134 |
+
Loads SAM2 using the official Hugging Face interface.
|
| 135 |
+
Returns: SAM2 predictor object or None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
"""
|
| 137 |
+
model_size = "large"
|
| 138 |
+
try:
|
| 139 |
+
if hasattr(self.device_manager, 'get_device_memory_gb'):
|
|
|
|
| 140 |
memory_gb = self.device_manager.get_device_memory_gb()
|
| 141 |
if memory_gb < 4:
|
| 142 |
model_size = "tiny"
|
|
|
|
| 145 |
elif memory_gb < 12:
|
| 146 |
model_size = "base"
|
| 147 |
logger.info(f"Selected SAM2 {model_size} based on {memory_gb}GB memory")
|
| 148 |
+
except Exception as e:
|
| 149 |
+
logger.warning(f"Could not determine device memory: {e}")
|
| 150 |
+
|
| 151 |
model_map = {
|
| 152 |
"tiny": "facebook/sam2.1-hiera-tiny",
|
| 153 |
+
"small": "facebook/sam2.1-hiera-small",
|
| 154 |
"base": "facebook/sam2.1-hiera-base-plus",
|
| 155 |
"large": "facebook/sam2.1-hiera-large"
|
| 156 |
}
|
|
|
|
| 157 |
model_id = model_map.get(model_size, model_map["large"])
|
| 158 |
+
|
| 159 |
if progress_callback:
|
| 160 |
progress_callback(0.3, f"Loading SAM2 {model_size} model...")
|
| 161 |
+
|
|
|
|
| 162 |
try:
|
|
|
|
| 163 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
|
|
|
|
|
| 164 |
predictor = SAM2ImagePredictor.from_pretrained(model_id)
|
|
|
|
|
|
|
| 165 |
if hasattr(predictor, 'model'):
|
| 166 |
predictor.model = predictor.model.to(self.device)
|
|
|
|
| 167 |
logger.info("SAM2 loaded successfully via official from_pretrained")
|
| 168 |
return predictor
|
| 169 |
+
except ImportError:
|
| 170 |
+
logger.error("SAM2 module not found. Install with: pip install sam2")
|
|
|
|
| 171 |
return None
|
|
|
|
| 172 |
except Exception as e:
|
| 173 |
logger.error(f"SAM2 loading failed: {e}")
|
| 174 |
+
return None
|
| 175 |
+
|
| 176 |
+
# ============================================================================
|
| 177 |
+
# MATANYONE LOADING (OFFICIAL INFERENCECORE)
|
| 178 |
+
# ============================================================================
|
| 179 |
+
def _load_matanyone_model(self, progress_callback: Optional[Callable] = None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
"""
|
| 181 |
+
Loads MatAnyOne using Hugging Face official 'matanyone' package.
|
| 182 |
+
Returns: InferenceCore object or None
|
| 183 |
+
|
| 184 |
+
---------- MATANYONE TUNING SECTION ----------
|
| 185 |
+
To adjust MatAnyOne settings, change arguments to InferenceCore below!
|
| 186 |
+
(e.g., for precision, model variant, device, chunk size, etc.)
|
| 187 |
+
---------------------------------------------
|
| 188 |
"""
|
| 189 |
try:
|
|
|
|
| 190 |
if progress_callback:
|
| 191 |
+
progress_callback(0.7, "Loading MatAnyOne model...")
|
| 192 |
+
|
| 193 |
+
# --- HIGHLIGHT: SET ANY MatAnyOne SETTINGS HERE ---
|
| 194 |
from matanyone import InferenceCore
|
| 195 |
+
|
| 196 |
+
# Example: To set chunk size or custom model repo, add kwargs here.
|
| 197 |
+
# See: https://huggingface.co/PeiqingYang/MatAnyone for config options
|
| 198 |
+
|
| 199 |
+
matanyone_kwargs = dict(
|
| 200 |
+
repo_id="PeiqingYang/MatAnyone", # You can change to any compatible Hugging Face repo
|
| 201 |
+
device=self.device, # Device to load on ("cuda" or "cpu")
|
| 202 |
+
dtype=torch.float32, # Change to torch.float16 for faster inference on good GPUs
|
| 203 |
+
# chunk_size=512, # Optional: for memory tuning on large videos
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
processor = InferenceCore(**matanyone_kwargs)
|
| 207 |
+
logger.info("MatAnyOne loaded successfully (InferenceCore)")
|
| 208 |
+
return processor
|
| 209 |
+
|
| 210 |
except ImportError:
|
| 211 |
+
logger.error("MatAnyOne module not found. Install with: pip install matanyone")
|
| 212 |
+
return None
|
|
|
|
| 213 |
except Exception as e:
|
| 214 |
+
logger.error(f"MatAnyOne loading failed: {e}")
|
| 215 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
+
# ============================================================================
|
| 218 |
+
# MODEL MANAGEMENT AND CLEANUP
|
| 219 |
+
# ============================================================================
|
| 220 |
def _cleanup_models(self):
|
|
|
|
| 221 |
if self.sam2_predictor is not None:
|
| 222 |
del self.sam2_predictor
|
| 223 |
self.sam2_predictor = None
|
|
|
|
| 224 |
if self.matanyone_model is not None:
|
| 225 |
del self.matanyone_model
|
| 226 |
self.matanyone_model = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
if torch.cuda.is_available():
|
| 228 |
torch.cuda.empty_cache()
|
| 229 |
gc.collect()
|
|
|
|
| 230 |
logger.debug("Model cleanup completed")
|
| 231 |
+
|
| 232 |
def cleanup(self):
|
|
|
|
| 233 |
self._cleanup_models()
|
| 234 |
logger.info("ModelLoader cleanup completed")
|
| 235 |
|
| 236 |
+
# ============================================================================
|
| 237 |
+
# MODEL INFO AND VALIDATION
|
| 238 |
+
# ============================================================================
|
|
|
|
| 239 |
def get_model_info(self) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
info = {
|
| 241 |
'models_loaded': self.loading_stats['models_loaded'],
|
| 242 |
'sam2_loaded': self.sam2_predictor is not None,
|
|
|
|
| 244 |
'device': str(self.device),
|
| 245 |
'loading_stats': self.loading_stats.copy()
|
| 246 |
}
|
|
|
|
| 247 |
if self.sam2_predictor is not None:
|
| 248 |
+
info['sam2_model_type'] = type(self.sam2_predictor).__name__
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
if self.matanyone_model is not None:
|
| 250 |
+
info['matanyone_model_type'] = type(self.matanyone_model).__name__
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
return info
|
| 252 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
def get_load_summary(self) -> str:
|
|
|
|
| 254 |
if not self.loading_stats['models_loaded']:
|
| 255 |
return "Models not loaded"
|
|
|
|
| 256 |
sam2_time = self.loading_stats['sam2_load_time']
|
| 257 |
matanyone_time = self.loading_stats['matanyone_load_time']
|
| 258 |
total_time = self.loading_stats['total_load_time']
|
|
|
|
| 259 |
summary = f"Models loaded in {total_time:.1f}s\n"
|
|
|
|
| 260 |
if self.sam2_predictor:
|
| 261 |
summary += f"✓ SAM2: {sam2_time:.1f}s\n"
|
| 262 |
else:
|
| 263 |
summary += f"✗ SAM2: Failed (using fallback)\n"
|
|
|
|
| 264 |
if self.matanyone_model:
|
| 265 |
+
summary += f"✓ MatAnyOne: {matanyone_time:.1f}s\n"
|
| 266 |
else:
|
| 267 |
+
summary += f"✗ MatAnyOne: Failed (using OpenCV)\n"
|
|
|
|
| 268 |
summary += f"Device: {self.device}"
|
|
|
|
| 269 |
return summary
|
| 270 |
+
|
| 271 |
def get_matanyone(self):
|
|
|
|
| 272 |
return self.matanyone_model
|
| 273 |
+
|
| 274 |
def get_sam2(self):
|
|
|
|
| 275 |
return self.sam2_predictor
|
| 276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
def validate_models(self) -> bool:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
try:
|
| 279 |
has_valid_model = False
|
|
|
|
|
|
|
| 280 |
if self.sam2_predictor is not None:
|
|
|
|
| 281 |
if hasattr(self.sam2_predictor, 'set_image') or hasattr(self.sam2_predictor, 'predict'):
|
| 282 |
has_valid_model = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
if self.matanyone_model is not None:
|
| 284 |
has_valid_model = True
|
|
|
|
|
|
|
| 285 |
return has_valid_model
|
|
|
|
| 286 |
except Exception as e:
|
| 287 |
logger.error(f"Model validation failed: {e}")
|
| 288 |
return False
|
| 289 |
|
| 290 |
+
def reload_models(self, progress_callback: Optional[Callable] = None) -> Tuple[Any, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
logger.info("Reloading models...")
|
| 292 |
self._cleanup_models()
|
| 293 |
self.loading_stats['models_loaded'] = False
|
|
|
|
| 294 |
return self.load_all_models(progress_callback)
|
| 295 |
+
|
| 296 |
@property
|
| 297 |
def models_ready(self) -> bool:
|
| 298 |
+
return self.sam2_predictor is not None or self.matanyone_model is not None
|
| 299 |
+
|
| 300 |
+
# ============================================================================
|
| 301 |
+
# END MODEL LOADER
|
| 302 |
+
# ============================================================================
|
| 303 |
+
|