Noursine's picture
Delete vertices
93f67bb verified
import io
import os
import gdown
import base64
from typing import Optional
import cv2
import numpy as np
from PIL import Image
from fastapi import FastAPI, UploadFile, File, Form
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.projects.point_rend import add_pointrend_config
# -------------------------------
# FastAPI setup
# -------------------------------
app = FastAPI(title="Rooftop Segmentation API")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# -------------------------------
# Available epsilons
# -------------------------------
EPSILONS = [0.01, 0.005, 0.004, 0.003, 0.001]
@app.get("/epsilons")
def get_epsilons():
return {"epsilons": EPSILONS}
# -------------------------------
# Google Drive model download (irregular-flat)
# -------------------------------
MODEL_PATH_IRREGULAR = "/tmp/model_irregular_flat.pth"
DRIVE_FILE_ID = "15vi4zPhCs3aBnGepVnXFOqQjxdK1jpnA"
def download_irregular_model():
if not os.path.exists(MODEL_PATH_IRREGULAR):
url = f"https://drive.google.com/uc?id={DRIVE_FILE_ID}"
tmp_dir = "/tmp/gdown"
os.makedirs(tmp_dir, exist_ok=True)
os.environ["GDOWN_CACHE_DIR"] = tmp_dir
print("Downloading irregular-flat Detectron2 model...")
gdown.download(url, MODEL_PATH_IRREGULAR, quiet=False, fuzzy=True, use_cookies=False)
print("Download complete.")
else:
print("Irregular-flat model already exists, skipping download.")
download_irregular_model()
if os.path.exists(MODEL_PATH_IRREGULAR):
print("Irregular-flat model is ready at", MODEL_PATH_IRREGULAR)
else:
print("Irregular-flat model NOT found! Something went wrong!")
# -------------------------------
# Detectron2 model setup
# -------------------------------
def setup_model_rect(weights_path: str):
cfg = get_cfg()
add_pointrend_config(cfg)
cfg_path = "detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml"
cfg.merge_from_file(cfg_path)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
cfg.MODEL.POINT_HEAD.NUM_CLASSES = cfg.MODEL.ROI_HEADS.NUM_CLASSES
cfg.MODEL.WEIGHTS = weights_path
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.DEVICE = "cpu"
return DefaultPredictor(cfg)
def setup_model_irregular(weights_path: str):
cfg = get_cfg()
add_pointrend_config(cfg)
cfg_path = "detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml"
cfg.merge_from_file(cfg_path)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
cfg.MODEL.POINT_HEAD.NUM_CLASSES = cfg.MODEL.ROI_HEADS.NUM_CLASSES
cfg.MODEL.WEIGHTS = weights_path
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.DEVICE = "cpu"
return DefaultPredictor(cfg)
# Load models
predictor_rect = setup_model_rect("/app/model_rect_final.pth")
predictor_irregular_flat = setup_model_irregular(MODEL_PATH_IRREGULAR)
# -------------------------------
# Post-processing functions
# -------------------------------
def postprocess_rect(mask: np.ndarray, epsilon: float) -> Optional[np.ndarray]:
mask_uint8 = (mask * 255).astype(np.uint8)
contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return None
c = max(contours, key=cv2.contourArea)
eps = epsilon * cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, eps, True)
simp = np.zeros_like(mask_uint8)
cv2.fillPoly(simp, [approx], 255)
return simp
def postprocess_irregular(mask: np.ndarray, epsilon: float) -> Optional[np.ndarray]:
mask_uint8 = (mask * 255).astype(np.uint8)
contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return None
c = max(contours, key=cv2.contourArea)
eps = epsilon * cv2.arcLength(c, True)
polygon = cv2.approxPolyDP(c, eps, True)
return polygon.reshape(-1, 2)
def mask_to_polygon(mask: np.ndarray) -> Optional[np.ndarray]:
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return None
largest = max(contours, key=cv2.contourArea)
return largest.reshape(-1, 2)
def extract_polygon_vertices(mask: np.ndarray, epsilon_ratio: float = 0.004):
"""
Extract clean polygon vertices from a binary mask.
Returns Nx2 array of vertices.
"""
mask_uint8 = (mask * 255).astype(np.uint8)
contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return None
c = max(contours, key=cv2.contourArea)
epsilon = epsilon_ratio * cv2.arcLength(c, True)
polygon = cv2.approxPolyDP(c, epsilon, True)
return polygon.reshape(-1, 2)
def im_to_b64_png(im: np.ndarray) -> str:
_, buffer = cv2.imencode(".png", im)
return base64.b64encode(buffer).decode()
def overlay_polygon(im: np.ndarray, polygon: Optional[np.ndarray]) -> np.ndarray:
overlay = im.copy()
if polygon is not None:
# Draw polygon outline
cv2.polylines(overlay, [polygon.astype(np.int32)], True, (0, 255, 0), 2)
# Draw vertex points (red circles)
for (x, y) in polygon:
cv2.circle(overlay, (int(x), int(y)), radius=4, color=(0, 0, 255), thickness=-1)
return overlay
# -------------------------------
# API endpoints
# -------------------------------
@app.get("/")
def root():
return {"message": "Rooftop Segmentation API is running!"}
@app.post("/predict")
async def predict(
file: UploadFile = File(...),
rooftop_type: str = Form(...),
epsilon: float = Form(0.004)
):
contents = await file.read()
try:
im_pil = Image.open(io.BytesIO(contents)).convert("RGB")
except Exception as e:
return JSONResponse(status_code=400, content={"error": "Invalid image", "detail": str(e)})
im = np.array(im_pil)[:, :, ::-1].copy() # RGB -> BGR
if rooftop_type.lower() == "rectangular":
predictor = predictor_rect
post_fn = lambda mask: postprocess_rect(mask, epsilon)
model_used = "model_rect_final.pth"
elif rooftop_type.lower() == "irregular":
predictor = predictor_irregular_flat
post_fn = lambda mask: postprocess_irregular(mask, epsilon)
model_used = "model_irregular_flat.pth"
else:
return JSONResponse(status_code=400, content={"error": "Invalid rooftop_type. Choose 'rectangular' or 'irregular'."})
outputs = predictor(im)
instances = outputs["instances"].to("cpu")
if len(instances) == 0:
return {
"polygon": None,
"vertices": None,
"vertex_count": 0,
"image": None,
"model_used": model_used,
"rooftop_type": rooftop_type,
"epsilon": epsilon
}
idx = int(instances.scores.argmax().item())
raw_mask = instances.pred_masks[idx].numpy().astype(np.uint8)
result_mask = post_fn(raw_mask)
polygon = mask_to_polygon(result_mask) if rooftop_type.lower() == "rectangular" else result_mask
# --- Vertices extraction ---
# vertices = extract_polygon_vertices(raw_mask, epsilon)
# vertex_count = len(vertices) if vertices is not None else 0
overlay = overlay_polygon(im, polygon)
img_b64 = im_to_b64_png(overlay)
return {
"polygon": polygon.tolist() if polygon is not None else None,
"image": img_b64,
"model_used": model_used,
"rooftop_type": rooftop_type,
"epsilon": epsilon
}