FlexSED / src /models /.ipynb_checkpoints /transformer-checkpoint.py
OpenSound's picture
Upload 544 files
3b6a091 verified
raw
history blame
8.9 kB
from einops import rearrange
from torch.cuda.amp import autocast
from functools import partial
from typing import Optional, Tuple
import torchaudio.transforms as audio_transforms
from einops.layers.torch import Rearrange
import torch
import torch.nn as nn
from .dasheng import AudioPatchEmbed, Block
# if hasattr(nn.functional, 'scaled_dot_product_attention'):
# ATTENTION_MODE = 'flash'
# else:
# ATTENTION_MODE = 'math'
# print(f'attention mode is {ATTENTION_MODE}')
class Dasheng_Encoder(nn.Module):
def __init__(self,
patch_size: Tuple[int, int] = (64, 4),
patch_stride: Tuple[int, int] = (64, 4),
embed_dim: int = 768,
depth: int = 12,
num_heads=8,
mlp_ratio=4.,
qkv_bias=True,
drop_rate=0.,
attn_drop_rate=0.,
norm_layer=None,
act_layer=None,
init_values=None,
target_length=1008,
pooling='mean',
time_patch_out: Optional[float] = None,
freq_patch_out: Optional[float] = None,
block_type='Block',
attention_type='Attention',
eval_avg='cat',
n_fft: int = 512,
n_mels: int = 64,
hop_size: int = 160,
win_size: int = 512,
f_min: int = 0,
f_max: int = 8000,
center: bool = True,
**kwargs):
super().__init__()
self.pooling = pooling
self.embed_dim = embed_dim
self.patch_stride = patch_stride
self.patch_size = patch_size
self.n_mels = n_mels
self.eval_avg = eval_avg
self.time_patch_out = time_patch_out
self.freq_patch_out = freq_patch_out
self.front_end = nn.Sequential(
audio_transforms.MelSpectrogram(f_min=f_min,
sample_rate=16000,
win_length=win_size,
center=center,
n_fft=n_fft,
f_max=f_max,
hop_length=hop_size,
n_mels=self.n_mels,
power=1))
self.to_db = audio_transforms.AmplitudeToDB(stype='magnitude', top_db=kwargs.get('top_db', 120))
self.init_bn = nn.Sequential(
Rearrange('b c f t -> b f c t'),
nn.BatchNorm2d(self.n_mels, momentum=0.01),
Rearrange('b f c t -> b c f t'))
self.target_length = target_length
self.patch_embed = AudioPatchEmbed(input_size=(self.n_mels,
target_length),
embed_dim=self.embed_dim,
patch_size=self.patch_size,
flatten=False,
patch_stride=self.patch_stride)
self.num_patches = self.patch_embed.num_patches
if pooling == 'token':
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.token_pos_embed = nn.Parameter(
torch.randn(1, embed_dim) * .02)
self.time_pos_embed = nn.Parameter(
torch.randn(1, embed_dim, 1, self.patch_embed.grid_size[1]) * .02)
self.freq_pos_embed = nn.Parameter(
torch.randn(1, embed_dim, self.patch_embed.grid_size[0], 1) * .02)
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
act_layer = act_layer or nn.GELU
self.pos_drop = nn.Dropout(p=drop_rate)
self.blocks = nn.Sequential(*[
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
init_values=init_values,
drop=drop_rate,
attn_drop=attn_drop_rate,
norm_layer=norm_layer,
act_layer=act_layer,
attention_type=attention_type,
) for _ in range(depth)
])
self.norm = norm_layer(embed_dim)
self.apply(self.init_weights)
if hasattr(self, 'cls_token') and self.cls_token is not None:
nn.init.normal_(self.cls_token, std=1e-6)
# group_masking = kwargs.get('group_masking', False)
# if isinstance(group_masking, bool):
# if group_masking is True:
# self.masking_func = self.random_masking_group
# else:
# self.masking_func = self.random_masking
# elif isinstance(group_masking, int):
# self.masking_func = partial(self.random_masking_group,
# group_factor=group_masking)
# @torch.jit.ignore
# def no_weight_decay(self):
# return {
# 'time_pos_embed', 'cls_token', 'freq_pos_embed', 'token_pos_embed'
# }
def init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
nn.init.constant_(module.bias, 0)
nn.init.constant_(module.weight, 1.0)
def forward_features(self, x):
x = self.patch_embed(x)
b, c, f, t = x.shape
x = x + self.time_pos_embed[:, :, :, :t]
x = x + self.freq_pos_embed[:, :, :, :] # Just for sin pos embed
x = rearrange(x, 'b c f t -> b (f t) c')
# x, mask, ids_restore = self.random_masking(x, mask_ratio)
# x, mask, ids_restore = self.masking_func(x, mask_ratio)
if self.pooling == 'token':
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
cls_token = cls_token + self.token_pos_embed[:, :]
x = torch.cat((cls_token, x), dim=1)
x = self.pos_drop(x)
for block in self.blocks:
x = block(x)
# x = self.norm(x)
return x
def load_state_dict(self, state_dict, **kwargs):
if 'time_pos_embed' in state_dict and self.time_pos_embed.shape != state_dict[
'time_pos_embed'].shape:
print("Positional Embedding shape not the same with model, resizing!")
self.change_pos_embedding(state_dict)
# Call the parent class method and capture the missing/unexpected keys
missing_keys, unexpected_keys = super().load_state_dict(state_dict, strict=False, **kwargs)
# Print missing and unexpected keys
if missing_keys:
print("Missing keys:", missing_keys)
if unexpected_keys:
print("Unexpected keys:", unexpected_keys)
def change_pos_embedding(self, state_dict):
target_time_pos_embed_length = self.time_pos_embed.shape[-1]
target_freq_pos_embed_length = self.freq_pos_embed.shape[-2]
pretrained_time_pos_embed = state_dict['time_pos_embed']
pretrained_freq_pos_embed = state_dict['freq_pos_embed']
if target_freq_pos_embed_length <= pretrained_time_pos_embed.shape[-1]:
state_dict['time_pos_embed'] = pretrained_time_pos_embed[
..., :target_time_pos_embed_length]
else:
state_dict['time_pos_embed'] = torch.nn.functional.interpolate(
pretrained_time_pos_embed,
size=(1, target_time_pos_embed_length),
align_corners=False,
mode='bilinear')
if target_freq_pos_embed_length <= pretrained_freq_pos_embed.shape[-2]:
state_dict[
'freq_pos_embed'] = pretrained_freq_pos_embed[:, :, :
target_freq_pos_embed_length, :]
else:
state_dict['freq_pos_embed'] = torch.nn.functional.interpolate(
pretrained_freq_pos_embed,
size=(target_freq_pos_embed_length, 1),
align_corners=False,
mode='bilinear')
def forward_to_spec(self, x):
# Do not use fp16 for feature extraction, that is likely to get nan
with autocast(enabled=False):
X = self.front_end(x)
# X = rearrange(X, 'b f t -> b 1 f t')
# X = self.init_bn(X)
return X
def forward(self, x):
# x = self.forward_to_spec(x)
# print(x.shape)
with autocast(enabled=False):
x = self.to_db(x)
x = rearrange(x, 'b f t -> b 1 f t')
x = self.init_bn(x)
x = self.forward_features(x)
return x