Spaces:
Sleeping
Sleeping
| from bs4 import BeautifulSoup | |
| import warnings | |
| import io | |
| import zipfile | |
| from lxml import etree | |
| import os | |
| from dotenv import load_dotenv | |
| import requests | |
| import subprocess | |
| import string | |
| from nltk.tokenize import word_tokenize | |
| from nltk.corpus import stopwords | |
| from nltk.stem import WordNetLemmatizer | |
| from concurrent.futures import ThreadPoolExecutor, as_completed | |
| import json | |
| import traceback | |
| from fastapi import FastAPI, BackgroundTasks, HTTPException | |
| from fastapi.staticfiles import StaticFiles | |
| from schemas import * | |
| from fastapi.middleware.cors import CORSMiddleware | |
| from fastapi.responses import FileResponse, StreamingResponse | |
| from litellm.router import Router | |
| from aiolimiter import AsyncLimiter | |
| import pandas as pd | |
| import asyncio | |
| import logging | |
| import re | |
| import nltk | |
| load_dotenv() | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format='[%(asctime)s][%(levelname)s][%(filename)s:%(lineno)d]: %(message)s', | |
| datefmt='%Y-%m-%d %H:%M:%S' | |
| ) | |
| nltk.download('stopwords') | |
| nltk.download('punkt_tab') | |
| nltk.download('wordnet') | |
| warnings.filterwarnings("ignore") | |
| app = FastAPI(title="Requirements Extractor") | |
| app.mount("/static", StaticFiles(directory="static"), name="static") | |
| app.add_middleware(CORSMiddleware, allow_credentials=True, allow_headers=[ | |
| "*"], allow_methods=["*"], allow_origins=["*"]) | |
| llm_router = Router(model_list=[ | |
| { | |
| "model_name": "gemini-v1", | |
| "litellm_params": | |
| { | |
| "model": "gemini/gemini-2.0-flash", | |
| "api_key": os.environ.get("GEMINI"), | |
| "max_retries": 10, | |
| "rpm": 15, | |
| "allowed_fails": 1, | |
| "cooldown": 30, | |
| } | |
| }, | |
| { | |
| "model_name": "gemini-v2", | |
| "litellm_params": | |
| { | |
| "model": "gemini/gemini-2.5-flash", | |
| "api_key": os.environ.get("GEMINI"), | |
| "max_retries": 10, | |
| "rpm": 10, | |
| "allowed_fails": 1, | |
| "cooldown": 30, | |
| } | |
| }], fallbacks=[{"gemini-v2": ["gemini-v1"]}], num_retries=10, retry_after=30) | |
| limiter_mapping = { | |
| model["model_name"]: AsyncLimiter(model["litellm_params"]["rpm"], 60) | |
| for model in llm_router.model_list | |
| } | |
| lemmatizer = WordNetLemmatizer() | |
| NSMAP = { | |
| 'w': 'http://schemas.openxmlformats.org/wordprocessingml/2006/main', | |
| 'v': 'urn:schemas-microsoft-com:vml' | |
| } | |
| def lemma(text: str): | |
| stop_words = set(stopwords.words('english')) | |
| txt = text.translate(str.maketrans('', '', string.punctuation)).strip() | |
| tokens = [token for token in word_tokenize( | |
| txt.lower()) if token not in stop_words] | |
| return [lemmatizer.lemmatize(token) for token in tokens] | |
| def get_docx_archive(url: str) -> zipfile.ZipFile: | |
| """Récupère le docx depuis l'URL et le retourne comme objet ZipFile""" | |
| if not url.endswith("zip"): | |
| raise ValueError("URL doit pointer vers un fichier ZIP") | |
| doc_id = os.path.splitext(os.path.basename(url))[0] | |
| resp = requests.get(url, verify=False, headers={ | |
| "User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' | |
| }) | |
| resp.raise_for_status() | |
| with zipfile.ZipFile(io.BytesIO(resp.content)) as zf: | |
| for file_name in zf.namelist(): | |
| if file_name.endswith(".docx"): | |
| docx_bytes = zf.read(file_name) | |
| return zipfile.ZipFile(io.BytesIO(docx_bytes)) | |
| elif file_name.endswith(".doc"): | |
| input_path = f"/tmp/{doc_id}.doc" | |
| output_path = f"/tmp/{doc_id}.docx" | |
| docx_bytes = zf.read(file_name) | |
| with open(input_path, "wb") as f: | |
| f.write(docx_bytes) | |
| subprocess.run([ | |
| "libreoffice", | |
| "--headless", | |
| "--convert-to", "docx", | |
| "--outdir", "/tmp", | |
| input_path | |
| ], check=True) | |
| with open(output_path, "rb") as f: | |
| docx_bytes = f.read() | |
| os.remove(input_path) | |
| os.remove(output_path) | |
| return zipfile.ZipFile(io.BytesIO(docx_bytes)) | |
| raise ValueError("Aucun fichier docx/doc trouvé dans l'archive") | |
| def parse_document_xml(docx_zip: zipfile.ZipFile) -> etree._ElementTree: | |
| """Parse le document.xml principal""" | |
| xml_bytes = docx_zip.read('word/document.xml') | |
| parser = etree.XMLParser(remove_blank_text=True) | |
| return etree.fromstring(xml_bytes, parser=parser) | |
| def clean_document_xml(root: etree._Element) -> None: | |
| """Nettoie le XML en modifiant l'arbre directement""" | |
| # Suppression des balises <w:del> et leur contenu | |
| for del_elem in root.xpath('//w:del', namespaces=NSMAP): | |
| parent = del_elem.getparent() | |
| if parent is not None: | |
| parent.remove(del_elem) | |
| # Désencapsulation des balises <w:ins> | |
| for ins_elem in root.xpath('//w:ins', namespaces=NSMAP): | |
| parent = ins_elem.getparent() | |
| index = parent.index(ins_elem) | |
| for child in ins_elem.iterchildren(): | |
| parent.insert(index, child) | |
| index += 1 | |
| parent.remove(ins_elem) | |
| # Nettoyage des commentaires | |
| for tag in ['w:commentRangeStart', 'w:commentRangeEnd', 'w:commentReference']: | |
| for elem in root.xpath(f'//{tag}', namespaces=NSMAP): | |
| parent = elem.getparent() | |
| if parent is not None: | |
| parent.remove(elem) | |
| def create_modified_docx(original_zip: zipfile.ZipFile, modified_root: etree._Element) -> bytes: | |
| """Crée un nouveau docx avec le XML modifié""" | |
| output = io.BytesIO() | |
| with zipfile.ZipFile(output, 'w', compression=zipfile.ZIP_DEFLATED) as new_zip: | |
| # Copier tous les fichiers non modifiés | |
| for file in original_zip.infolist(): | |
| if file.filename != 'word/document.xml': | |
| new_zip.writestr(file, original_zip.read(file.filename)) | |
| # Ajouter le document.xml modifié | |
| xml_str = etree.tostring( | |
| modified_root, | |
| xml_declaration=True, | |
| encoding='UTF-8', | |
| pretty_print=True | |
| ) | |
| new_zip.writestr('word/document.xml', xml_str) | |
| output.seek(0) | |
| return output.getvalue() | |
| def docx_to_txt(doc_id: str, url: str): | |
| docx_zip = get_docx_archive(url) | |
| root = parse_document_xml(docx_zip) | |
| clean_document_xml(root) | |
| modified_bytes = create_modified_docx(docx_zip, root) | |
| input_path = f"/tmp/{doc_id}_cleaned.docx" | |
| output_path = f"/tmp/{doc_id}_cleaned.txt" | |
| with open(input_path, "wb") as f: | |
| f.write(modified_bytes) | |
| subprocess.run([ | |
| "libreoffice", | |
| "--headless", | |
| "--convert-to", "txt", | |
| "--outdir", "/tmp", | |
| input_path | |
| ], check=True) | |
| with open(output_path, "r", encoding="utf-8") as f: | |
| txt_data = [line.strip() for line in f if line.strip()] | |
| os.remove(input_path) | |
| os.remove(output_path) | |
| return txt_data | |
| def render_page(): | |
| return FileResponse("index.html") | |
| def get_meetings(req: MeetingsRequest): | |
| working_group = req.working_group | |
| tsg = re.sub(r"\d+", "", working_group) | |
| wg_number = re.search(r"\d", working_group).group(0) | |
| logging.debug(tsg, wg_number) | |
| url = "https://www.3gpp.org/ftp/tsg_" + tsg | |
| logging.debug(url) | |
| resp = requests.get(url, verify=False) | |
| soup = BeautifulSoup(resp.text, "html.parser") | |
| meeting_folders = [] | |
| all_meetings = [] | |
| wg_folders = [item.get_text() for item in soup.select("tr td a")] | |
| selected_folder = None | |
| for folder in wg_folders: | |
| if "wg" + str(wg_number) in folder.lower(): | |
| selected_folder = folder | |
| break | |
| url += "/" + selected_folder | |
| logging.debug(url) | |
| if selected_folder: | |
| resp = requests.get(url, verify=False) | |
| soup = BeautifulSoup(resp.text, "html.parser") | |
| meeting_folders = [item.get_text() for item in soup.select("tr td a") if item.get_text( | |
| ).startswith("TSG") or (item.get_text().startswith("CT") and "-" in item.get_text())] | |
| all_meetings = [working_group + "#" + meeting.split("_", 1)[1].replace("_", " ").replace( | |
| "-", " ") if meeting.startswith('TSG') else meeting.replace("-", "#") for meeting in meeting_folders] | |
| return MeetingsResponse(meetings=dict(zip(all_meetings, meeting_folders))) | |
| def get_change_request_dataframe(req: DataRequest): | |
| working_group = req.working_group | |
| tsg = re.sub(r"\d+", "", working_group) | |
| wg_number = re.search(r"\d", working_group).group(0) | |
| url = "https://www.3gpp.org/ftp/tsg_" + tsg | |
| logging.info("Fetching TDocs dataframe") | |
| resp = requests.get(url, verify=False) | |
| soup = BeautifulSoup(resp.text, "html.parser") | |
| wg_folders = [item.get_text() for item in soup.select("tr td a")] | |
| selected_folder = None | |
| for folder in wg_folders: | |
| if str(wg_number) in folder: | |
| selected_folder = folder | |
| break | |
| url += "/" + selected_folder + "/" + req.meeting + "/docs" | |
| resp = requests.get(url, verify=False) | |
| soup = BeautifulSoup(resp.text, "html.parser") | |
| files = [item.get_text() for item in soup.select("tr td a") | |
| if item.get_text().endswith(".xlsx")] | |
| def gen_url(tdoc: str): | |
| return f"{url}/{tdoc}.zip" | |
| df = pd.read_excel(str(url + "/" + files[0]).replace("#", "%23")) | |
| filtered_df = df[(((df["Type"] == "CR") & ((df["CR category"] == "B") | (df["CR category"] == "C"))) | (df["Type"] == "pCR")) & ~( | |
| df["Uploaded"].isna())][["TDoc", "Title", "CR category", "Source", "Type", "Agenda item", "Agenda item description", "TDoc Status"]] | |
| filtered_df["URL"] = filtered_df["TDoc"].apply(gen_url) | |
| df = filtered_df.fillna("") | |
| return DataResponse(data=df[["TDoc", "Title", "Type", "TDoc Status", "Agenda item description", "URL"]].to_dict(orient="records")) | |
| def download_tdocs(req: DownloadRequest): | |
| documents = req.documents | |
| def process_document(doc: str): | |
| doc_id = doc | |
| url = requests.post( | |
| 'https://organizedprogrammers-3gppdocfinder.hf.space/find', | |
| headers={"Content-Type": "application/json"}, | |
| data=json.dumps({"doc_id": doc_id}), | |
| verify=False | |
| ) | |
| print(url.status_code) | |
| url = url.json()['url'] | |
| print(url) | |
| try: | |
| txt = "\n".join(docx_to_txt(doc_id, url)) | |
| except Exception as e: | |
| txt = f"Document {doc_id} text extraction failed: {e}" | |
| return doc_id, txt.encode("utf-8") | |
| def process_batch(batch): | |
| results = {} | |
| for doc in batch: | |
| try: | |
| doc_id, file_bytes = process_document(doc) | |
| results[doc_id] = file_bytes | |
| except Exception as e: | |
| traceback.print_exception(e) | |
| results[doc] = b"Erreur" | |
| return results | |
| documents_bytes = process_batch(documents) | |
| zip_buffer = io.BytesIO() | |
| with zipfile.ZipFile(zip_buffer, mode='w', compression=zipfile.ZIP_DEFLATED) as zip_file: | |
| for doc_id, txt_data in documents_bytes.items(): | |
| zip_file.writestr(f'{doc_id}.txt', txt_data) | |
| zip_buffer.seek(0) | |
| return StreamingResponse( | |
| zip_buffer, | |
| media_type="application/zip" | |
| ) | |
| async def gen_reqs(req: RequirementsRequest, background_tasks: BackgroundTasks): | |
| documents = req.documents | |
| n_docs = len(documents) | |
| logging.info("Generating requirements for documents: {}".format([doc.document for doc in documents])) | |
| def prompt(doc_id, full): | |
| return f"Here's the document whose ID is {doc_id} : {full}\n\nExtract all requirements and group them by context, returning a list of objects where each object includes a document ID, a concise description of the context where the requirements apply (not a chapter title or copied text), and a list of associated requirements; always return the result as a list, even if only one context is found. Remove the errors" | |
| async def process_document(doc): | |
| doc_id = doc.document | |
| url = doc.url | |
| try: | |
| full = "\n".join(docx_to_txt(doc_id, url)) | |
| except Exception as e: | |
| traceback.print_exception(e) | |
| return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements | |
| try: | |
| model_used = "gemini-v2" # À adapter si fallback activé | |
| async with limiter_mapping[model_used]: | |
| resp_ai = await llm_router.acompletion( | |
| model=model_used, | |
| messages=[ | |
| {"role": "user", "content": prompt(doc_id, full)}], | |
| response_format=RequirementsResponse | |
| ) | |
| return RequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements | |
| except Exception as e: | |
| if "rate limit" in str(e).lower(): | |
| try: | |
| model_used = "gemini-v2" # À adapter si fallback activé | |
| async with limiter_mapping[model_used]: | |
| resp_ai = await llm_router.acompletion( | |
| model=model_used, | |
| messages=[ | |
| {"role": "user", "content": prompt(doc_id, full)}], | |
| response_format=RequirementsResponse | |
| ) | |
| return RequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements | |
| except Exception as fallback_e: | |
| traceback.print_exception(fallback_e) | |
| return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements | |
| else: | |
| traceback.print_exception(e) | |
| return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements | |
| async def process_batch(batch): | |
| results = await asyncio.gather(*(process_document(doc) for doc in batch)) | |
| return [item for sublist in results for item in sublist] | |
| all_requirements = [] | |
| if n_docs <= 30: | |
| batch_results = await process_batch(documents) | |
| all_requirements.extend(batch_results) | |
| else: | |
| batch_size = 30 | |
| batches = [documents[i:i + batch_size] | |
| for i in range(0, n_docs, batch_size)] | |
| for i, batch in enumerate(batches): | |
| batch_results = await process_batch(batch) | |
| all_requirements.extend(batch_results) | |
| if i < len(batches) - 1: | |
| background_tasks.add_task(asyncio.sleep, 60) | |
| return RequirementsResponse(requirements=all_requirements) | |
| def find_requirements_from_problem_description(req: ReqSearchRequest): | |
| requirements = req.requirements | |
| query = req.query | |
| requirements_text = "\n".join( | |
| [f"[Selection ID: {r.req_id} | Document: {r.document} | Context: {r.context} | Requirement: {r.requirement}]" for r in requirements]) | |
| print("Called the LLM") | |
| resp_ai = llm_router.completion( | |
| model="gemini-v2", | |
| messages=[{"role": "user", "content": f"Given all the requirements : \n {requirements_text} \n and the problem description \"{query}\", return a list of 'Selection ID' for the most relevant corresponding requirements that reference or best cover the problem. If none of the requirements covers the problem, simply return an empty list"}], | |
| response_format=ReqSearchLLMResponse | |
| ) | |
| print("Answered") | |
| print(resp_ai.choices[0].message.content) | |
| out_llm = ReqSearchLLMResponse.model_validate_json( | |
| resp_ai.choices[0].message.content).selected | |
| if max(out_llm) > len(requirements) - 1: | |
| raise HTTPException( | |
| status_code=500, detail="LLM error : Generated a wrong index, please try again.") | |
| return ReqSearchResponse(requirements=[requirements[i] for i in out_llm]) | |