Spaces:
Runtime error
Runtime error
| # Copyright (c) 2025 NVIDIA CORPORATION. | |
| # Licensed under the MIT license. | |
| # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
| # LICENSE is in incl_licenses directory. | |
| # Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| # SPDX-License-Identifier: Apache-2.0 | |
| import os | |
| import typing | |
| from typing import List, Optional | |
| if typing.TYPE_CHECKING: | |
| from transformers import PreTrainedModel | |
| else: | |
| PreTrainedModel = None | |
| __all__ = ["load"] | |
| def load( | |
| model_path: str, | |
| model_base: Optional[str] = None, | |
| devices: Optional[List[int]] = None, | |
| **kwargs, | |
| ) -> PreTrainedModel: | |
| import torch | |
| from llava.conversation import auto_set_conversation_mode | |
| from llava.mm_utils import get_model_name_from_path | |
| from llava.model.builder import load_pretrained_model | |
| auto_set_conversation_mode(model_path) | |
| model_name = get_model_name_from_path(model_path) | |
| model_path = os.path.expanduser(model_path) | |
| if os.path.exists(os.path.join(model_path, "model")): | |
| model_path = os.path.join(model_path, "model") | |
| # Set `max_memory` to constrain which GPUs to use | |
| if devices is not None: | |
| assert "max_memory" not in kwargs, "`max_memory` should not be set when `devices` is set" | |
| kwargs.update(max_memory={device: torch.cuda.get_device_properties(device).total_memory for device in devices}) | |
| model = load_pretrained_model(model_path, model_name, model_base, **kwargs)[1] | |
| return model | |