justiceai / app.py
Princeaka's picture
Update app.py
491f92c verified
from sqlalchemy.pool import NullPool
import os
import time
import json
import hashlib
import threading
import re
import subprocess
import shutil
import logging
import tempfile
import uuid
import asyncio
import base64
import io
import logging
logger = logging.getLogger("app")
from datetime import datetime, timezone
from collections import deque
from typing import Optional, Dict, Any, List
from fastapi import (
FastAPI, Request, Body, Query, Header, BackgroundTasks,
File, UploadFile, Form, HTTPException, status
)
from fastapi.responses import JSONResponse, StreamingResponse, HTMLResponse, FileResponse
from sqlalchemy import create_engine, text as sql_text
# Optional external helpers
import requests
# Optional ML libs
try:
import torch
except Exception:
torch = None
try:
from sentence_transformers import SentenceTransformer
except Exception:
SentenceTransformer = None
try:
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline as hf_pipeline
except Exception:
AutoTokenizer = None
AutoModelForSeq2SeqLM = None
hf_pipeline = None
# Optional TTS (Coqui)
try:
from TTS.api import TTS
TTS_AVAILABLE = True
except Exception:
TTS_AVAILABLE = False
# Optional language module
try:
import language as language_module # type: ignore
LANGUAGE_MODULE_AVAILABLE = True
except Exception:
language_module = None
LANGUAGE_MODULE_AVAILABLE = False
# Optional emojis helper
try:
from emojis import get_emoji, get_category_for_mood # type: ignore
EMOJIS_AVAILABLE = True
except Exception:
EMOJIS_AVAILABLE = False
def get_category_for_mood(m): return "neutral"
def get_emoji(cat, intensity=0.5): return "🤖"
# Import custom modules
try:
from voicecloner import synthesize_speech, is_available as tts_is_available, cache_speaker_sample
VOICECLONER_AVAILABLE = True
logger.info("voicecloner module loaded successfully")
except Exception as e:
VOICECLONER_AVAILABLE = False
logger.warning(f"voicecloner module not available: {e}")
try:
from coder import Coder
CODER_AVAILABLE = True
logger.info("coder module loaded successfully")
except Exception as e:
CODER_AVAILABLE = False
logger.warning(f"coder module not available: {e}")
import traceback
logger.error(f"Coder import traceback: {traceback.format_exc()}")
try:
from videogenerator import VideoGenerator
VIDEOGEN_AVAILABLE = True
except Exception:
VIDEOGEN_AVAILABLE = False
logger.warning("videogenerator module not available")
try:
from image_editor import ImageEditor
IMAGE_EDITOR_AVAILABLE = True
logger.info("image_editor module loaded successfully")
except Exception as e:
IMAGE_EDITOR_AVAILABLE = False
logger.warning(f"image_editor module not available: {e}")
# Optional langdetect
try:
from langdetect import detect as detect_lang
except Exception:
detect_lang = None
# Optional fuzzy matching for spell tolerance
try:
from difflib import SequenceMatcher
FUZZY_AVAILABLE = True
except Exception:
FUZZY_AVAILABLE = False
# Moderator pipeline (optional)
moderator = None
try:
if hf_pipeline is not None:
moderator = hf_pipeline("text-classification", model="unitary/toxic-bert", device=-1)
except Exception:
moderator = None
# Detect whether python-multipart is available (package name: multipart)
try:
import multipart # type: ignore
HAVE_MULTIPART = True
except Exception:
HAVE_MULTIPART = False
# Pillow for image editing
try:
from PIL import Image, ImageOps, ImageFilter, ImageDraw, ImageFont
PIL_AVAILABLE = True
except Exception:
PIL_AVAILABLE = False
# Config via environment
ADMIN_KEY = os.environ.get("ADMIN_KEY")
DATABASE_URL = os.environ.get("DATABASE_URL", "sqlite:///justice_user.db")
KNOWLEDGEDATABASE_URL = os.environ.get("KNOWLEDGEDATABASE_URL", DATABASE_URL)
EMBED_MODEL_NAME = os.environ.get("EMBED_MODEL_NAME", "paraphrase-multilingual-MiniLM-L12-v2")
TRANSLATION_CACHE_DIR = os.environ.get("TRANSLATION_CACHE_DIR", "./translation_models")
LLM_MODEL_PATH = os.environ.get("LLM_MODEL_PATH", "")
SAVE_MEMORY_CONFIDENCE = float(os.environ.get("SAVE_MEMORY_CONFIDENCE", "0.45"))
MAX_INPUT_SIZE = int(os.environ.get("MAX_INPUT_SIZE", "1000000"))
OLLAMA_MODEL = os.environ.get("OLLAMA_MODEL", "llama3")
OLLAMA_HTTP_URL = os.environ.get("OLLAMA_HTTP_URL", "http://localhost:11434")
OLLAMA_AUTO_PULL = os.environ.get("OLLAMA_AUTO_PULL", "0") in ("1", "true", "yes")
MODEL_TIMEOUT = float(os.environ.get("MODEL_TIMEOUT", "10"))
# TTS settings
TTS_MODEL_NAME = os.environ.get("TTS_MODEL_NAME", "tts_models/multilingual/multi-dataset/xtts_v2")
TTS_DEVICE = os.environ.get("TTS_DEVICE", "cuda" if (torch is not None and torch.cuda.is_available()) else "cpu")
TTS_USE_HALF = os.environ.get("TTS_USE_HALF", "1") in ("1", "true", "yes")
# Logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("justicebrain")
# heartbeat & start timestamp
last_heartbeat = {"time": datetime.utcnow().replace(tzinfo=timezone.utc).isoformat(), "ok": True}
app_start_time = time.time()
# DB engines
engine_user = create_engine(
DATABASE_URL,
poolclass=NullPool,
connect_args={"check_same_thread": False} if DATABASE_URL.startswith("sqlite") else {}
)
engine_knowledge = create_engine(
KNOWLEDGEDATABASE_URL,
poolclass=NullPool,
connect_args={"check_same_thread": False} if KNOWLEDGEDATABASE_URL.startswith("sqlite") else {}
)
app = FastAPI(title="Justice Brain — Backend")
# ✅ Serve generated videos from /tmp/video_sandbox
from fastapi.staticfiles import StaticFiles
video_dir = os.getenv("VIDEO_SANDBOX_DIR", "/tmp/video_sandbox")
# ✅ Create the folder if it doesn’t exist yet (prevents runtime error)
os.makedirs(video_dir, exist_ok=True)
# ✅ Mount the directory for frontend access
app.mount("/static/video_sandbox", StaticFiles(directory=video_dir), name="videos")
# Initialize custom modules
coder_instance = None
video_generator = None
image_editor = None
try:
if CODER_AVAILABLE:
coder_instance = Coder()
logger.info("Coder instance initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize Coder: {e}")
import traceback
logger.error(f"Coder init traceback: {traceback.format_exc()}")
CODER_AVAILABLE = False
try:
if VIDEOGEN_AVAILABLE:
video_generator = VideoGenerator()
logger.info("VideoGenerator instance initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize VideoGenerator: {e}")
VIDEOGEN_AVAILABLE = False
try:
if IMAGE_EDITOR_AVAILABLE:
image_editor = ImageEditor()
logger.info("ImageEditor instance initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize ImageEditor: {e}")
IMAGE_EDITOR_AVAILABLE = False
# -------------------------
# Database schema creation
# -------------------------
def ensure_tables():
dialect_k = engine_knowledge.dialect.name
with engine_knowledge.begin() as conn:
if dialect_k == "sqlite":
conn.execute(sql_text("""
CREATE TABLE IF NOT EXISTS knowledge (
id INTEGER PRIMARY KEY AUTOINCREMENT,
text TEXT,
reply TEXT,
language TEXT DEFAULT 'und',
embedding BLOB,
category TEXT DEFAULT 'general',
topic TEXT DEFAULT 'general',
confidence FLOAT DEFAULT 0,
source TEXT,
meta TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
"""))
else:
conn.execute(sql_text("""
CREATE TABLE IF NOT EXISTS knowledge (
id SERIAL PRIMARY KEY,
text TEXT,
reply TEXT,
language TEXT DEFAULT 'und',
embedding BYTEA,
category TEXT DEFAULT 'general',
topic TEXT DEFAULT 'general',
confidence FLOAT DEFAULT 0,
source TEXT,
meta JSONB,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
"""))
dialect_u = engine_user.dialect.name
with engine_user.begin() as conn:
if dialect_u == "sqlite":
conn.execute(sql_text("""
CREATE TABLE IF NOT EXISTS user_memory (
id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id TEXT,
username TEXT,
ip TEXT,
text TEXT,
reply TEXT,
language TEXT DEFAULT 'und',
mood TEXT,
confidence FLOAT DEFAULT 0,
topic TEXT DEFAULT 'general',
source TEXT,
meta TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
"""))
else:
conn.execute(sql_text("""
CREATE TABLE IF NOT EXISTS user_memory (
id SERIAL PRIMARY KEY,
user_id TEXT,
username TEXT,
ip TEXT,
text TEXT,
reply TEXT,
language TEXT DEFAULT 'und',
mood TEXT,
confidence FLOAT DEFAULT 0,
topic TEXT DEFAULT 'general',
source TEXT,
meta JSONB,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
"""))
ensure_tables()
def ensure_column_exists(table: str, column: str, col_def_sql: str):
dialect = engine_user.dialect.name
try:
with engine_user.begin() as conn:
if dialect == "sqlite":
try:
rows = conn.execute(sql_text(f"PRAGMA table_info({table})")).fetchall()
existing = [r[1] for r in rows]
if column not in existing:
conn.execute(sql_text(f"ALTER TABLE {table} ADD COLUMN {col_def_sql}"))
except Exception:
pass
else:
try:
conn.execute(sql_text(f"ALTER TABLE {table} ADD COLUMN IF NOT EXISTS {col_def_sql}"))
except Exception:
pass
except Exception:
pass
ensure_column_exists("knowledge", "reply", "reply TEXT")
ensure_column_exists("user_memory", "reply", "reply TEXT")
# -------------------------
# Utility helpers
# -------------------------
def sanitize_knowledge_text(t: Any) -> str:
if not isinstance(t, str):
return str(t or "").strip()
s = t.strip()
try:
parsed = json.loads(s)
if isinstance(parsed, dict) and "text" in parsed:
return str(parsed["text"]).strip()
except Exception:
pass
if (s.startswith('"') and s.endswith('"')) or (s.startswith("'") and s.endswith("'")):
s = s[1:-1].strip()
return " ".join(s.split())
def dedupe_sentences(text: str) -> str:
if not text:
return text
sentences = []
seen = set()
for chunk in re.split(r'\n+', text):
parts = re.split(r'(?<=[.?!])\s+', chunk)
for sent in parts:
s = sent.strip()
if not s:
continue
if s in seen:
continue
seen.add(s)
sentences.append(s)
return "\n".join(sentences)
_EMOJI_PATTERN = re.compile(
"["
"\U0001F600-\U0001F64F"
"\U0001F300-\U0001F5FF"
"\U0001F680-\U0001F6FF"
"\U0001F1E0-\U0001F1FF"
"\u2600-\u26FF"
"\u2700-\u27BF"
"]+", flags=re.UNICODE
)
def extract_emojis(text: str) -> List[str]:
if not text:
return []
return _EMOJI_PATTERN.findall(text)
def emoji_sentiment_score(emojis: List[str]) -> float:
if not emojis:
return 0.0
score = 0.0
for e in "".join(emojis):
ord_val = ord(e)
if 0x1F600 <= ord_val <= 0x1F64F:
score += 0.5
elif 0x2600 <= ord_val <= 0x26FF:
score += 0.1
return max(-1.0, min(1.0, score / max(1, len(emojis))))
# -------------------------
# Language detection & translation
# -------------------------
_translation_model_cache: Dict[str, Any] = {}
def detect_language_safe(text: str) -> str:
text = (text or "").strip()
if not text:
return "en"
if LANGUAGE_MODULE_AVAILABLE:
try:
if hasattr(language_module, "detect"):
out = language_module.detect(text)
if out:
return out
if hasattr(language_module, "detect_language"):
out = language_module.detect_language(text)
if out:
return out
except Exception:
pass
lower = text.lower()
greetings = {"hola":"es","bonjour":"fr","hallo":"de","ciao":"it","こんにちは":"ja","你好":"zh","안녕하세요":"ko"}
for k, v in greetings.items():
if k in lower:
return v
if re.search(r'[\u4e00-\u9fff]', text):
return "zh"
if re.search(r'[\u3040-\u30ff]', text):
return "ja"
letters = re.findall(r'[A-Za-z]', text)
if len(letters) >= max(1, 0.6 * len(text)):
return "en"
if detect_lang is not None:
try:
out = detect_lang(text)
if out:
return out
except Exception:
pass
return "und"
def translate_text(text: str, src: str, tgt: str) -> str:
if not text:
return text
if LANGUAGE_MODULE_AVAILABLE:
try:
if hasattr(language_module, "translate"):
out = language_module.translate(text, src, tgt)
if out:
return out
if src in ("en", "eng") and hasattr(language_module, "translate_from_en"):
out = language_module.translate_from_en(text, tgt)
if out:
return out
if tgt in ("en", "eng") and hasattr(language_module, "translate_to_en"):
out = language_module.translate_to_en(text, src)
if out:
return out
except Exception:
pass
src_code = (src or "und").split("-")[0].lower()
tgt_code = (tgt or "und").split("-")[0].lower()
if not re.fullmatch(r"[a-z]{2,3}", src_code) or not re.fullmatch(r"[a-z]{2,3}", tgt_code):
return text
key = f"{src_code}-{tgt_code}"
try:
if key in _translation_model_cache:
tokenizer, model = _translation_model_cache[key]
inputs = tokenizer([text], return_tensors="pt", truncation=True)
outputs = model.generate(**inputs, max_length=1024)
return tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
except Exception:
pass
try:
if AutoTokenizer is not None and AutoModelForSeq2SeqLM is not None:
model_name = f"Helsinki-NLP/opus-mt-{src_code}-{tgt_code}"
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=TRANSLATION_CACHE_DIR)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, cache_dir=TRANSLATION_CACHE_DIR)
_translation_model_cache[key] = (tokenizer, model)
inputs = tokenizer([text], return_tensors="pt", truncation=True)
outputs = model.generate(**inputs, max_length=1024)
return tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
except Exception:
pass
return text
def translate_to_english(text: str, src_lang: str) -> str:
src = (src_lang or "und").split("-")[0].lower()
if src in ("en", "eng", "", "und"):
return text
return translate_text(text, src, "en")
def translate_from_english(text: str, tgt_lang: str) -> str:
tgt = (tgt_lang or "und").split("-")[0].lower()
if tgt in ("en", "eng", "", "und"):
return text
return translate_text(text, "en", tgt)
# -------------------------
# Embeddings helpers
# -------------------------
embed_model = None
def try_load_embed():
global embed_model
if SentenceTransformer is None:
logger.info("[JusticeAI] SentenceTransformer not available")
return
try:
embed_model = SentenceTransformer(EMBED_MODEL_NAME, device="cpu")
logger.info(f"[JusticeAI] Loaded embed model: {EMBED_MODEL_NAME}")
except Exception as e:
embed_model = None
logger.warning(f"[JusticeAI] failed to load embed model: {e}")
def embed_to_bytes(text: str) -> Optional[bytes]:
if embed_model is None:
return None
try:
emb = embed_model.encode([text], convert_to_tensor=True)[0]
return emb.cpu().numpy().tobytes()
except Exception:
return None
def bytes_to_tensor(b: bytes):
"""
Convert embedding bytes (as stored in DB) back to a torch tensor if possible.
Returns None if conversion not possible.
"""
if b is None:
return None
if torch is None:
return None
try:
import numpy as _np
arr = _np.frombuffer(b, dtype=_np.float32)
# If embed_model is available, try to infer dimension from it
if embed_model is not None:
# some sentence-transformers return float32 vectors
return torch.from_numpy(arr)
return torch.from_numpy(arr)
except Exception as e:
logger.debug(f"bytes_to_tensor conversion failed: {e}")
return None
# -------------------------
# Blocking with timeout helper (for non-TTS blocking ops)
# -------------------------
async def run_blocking_with_timeout(func, *args, timeout: float = MODEL_TIMEOUT):
loop = asyncio.get_running_loop()
fut = loop.run_in_executor(None, lambda: func(*args))
return await asyncio.wait_for(fut, timeout=timeout)
# -------------------------
# Ollama helpers
# -------------------------
def ollama_cli_available() -> bool:
return shutil.which("ollama") is not None
def ollama_http_available() -> bool:
try:
resp = requests.get(f"{OLLAMA_HTTP_URL}/health", timeout=1.0)
return resp.status_code == 200
except Exception:
return False
def call_ollama_http(prompt: str, model: str = OLLAMA_MODEL, timeout_s: int = MODEL_TIMEOUT) -> Optional[str]:
try:
url = f"{OLLAMA_HTTP_URL}/api/generate"
payload = {"model": model, "prompt": prompt, "max_tokens": 256}
headers = {"Content-Type": "application/json"}
r = requests.post(url, json=payload, headers=headers, timeout=min(timeout_s, MODEL_TIMEOUT))
if r.status_code == 200:
try:
obj = r.json()
for key in ("output", "text", "result", "generations"):
if key in obj:
return obj[key] if isinstance(obj[key], str) else json.dumps(obj[key])
return r.text
except Exception:
return r.text
else:
logger.debug(f"ollama HTTP status {r.status_code}")
return None
except Exception as e:
logger.debug(f"ollama HTTP call failed: {e}")
return None
def call_ollama_cli(prompt: str, model: str = OLLAMA_MODEL, timeout_s: int = MODEL_TIMEOUT) -> Optional[str]:
if not ollama_cli_available():
return None
try:
proc = subprocess.run(["ollama", "run", model, "--prompt", prompt], capture_output=True, text=True, timeout=min(timeout_s, MODEL_TIMEOUT))
if proc.returncode == 0:
return proc.stdout.strip() or proc.stderr.strip()
else:
logger.debug(f"ollama CLI rc={proc.returncode}")
return None
except Exception as e:
logger.debug(f"ollama CLI call exception: {e}")
return None
def infer_topic_with_ollama(msg: str, topics: List[str], model: str = OLLAMA_MODEL, timeout_s: int = MODEL_TIMEOUT) -> Optional[str]:
if not msg or not topics:
return None
topics_escaped = [t.replace('"','\\"') for t in topics]
topics_list = ", ".join(f'"{t}"' for t in topics_escaped)
escaped_msg = msg.replace('"', '\\"')
prompt = (
"You are a strict topic classifier. Given a user message, choose the single best topic from this list: "
f"[{topics_list}]. If none match, return topic \"none\". Return ONLY a JSON object with a single key \"topic\" and the chosen topic string.\n\n"
f"Message: \"{escaped_msg}\"\n\n"
"Respond with JSON only. Example: {\"topic\": \"security\"}"
)
out = call_ollama_http(prompt, model=model, timeout_s=timeout_s)
if out:
try:
j = json.loads(out)
if isinstance(j, dict) and "topic" in j:
t = j["topic"]
if t in topics:
return t
if t == "none":
return None
except Exception:
try:
idx = out.find("{")
if idx >= 0:
j = json.loads(out[idx:])
t = j.get("topic")
if t in topics:
return t
except Exception:
pass
out = call_ollama_cli(prompt, model=model, timeout_s=timeout_s)
if out:
try:
j = json.loads(out)
if isinstance(j, dict) and "topic" in j:
t = j["topic"]
if t in topics:
return t
if t == "none":
return None
except Exception:
try:
idx = out.find("{")
if idx >= 0:
j = json.loads(out[idx:])
t = j.get("topic")
if t in topics:
return t
except Exception:
pass
return None
# -------------------------
# Simple fallback topic inference (NEW)
# -------------------------
def fuzzy_match_score(s1: str, s2: str) -> float:
"""
Calculate fuzzy match score between two strings (0.0 to 1.0).
Handles spell errors and variations.
"""
if not FUZZY_AVAILABLE:
return 1.0 if s1.lower() == s2.lower() else 0.0
return SequenceMatcher(None, s1.lower(), s2.lower()).ratio()
def infer_topic_from_message(msg: str, topics: List[str]) -> Optional[str]:
"""
Fallback topic inference: tries keyword matching against topic names and
common words. Returns the first matching topic or None.
"""
if not msg or not topics:
return None
low = msg.lower()
# Try exact topic token matches first
for t in topics:
if not t:
continue
token = str(t).lower()
if token and token in low:
return t
# split topic into words and check
for w in re.split(r'[\s\-_]+', token):
if w and re.search(r'\b' + re.escape(w) + r'\b', low):
return t
# Try fuzzy matching for spell tolerance
if FUZZY_AVAILABLE:
best_match = None
best_score = 0.0
for t in topics:
if not t:
continue
token = str(t).lower()
# Check fuzzy match against whole message
score = fuzzy_match_score(token, low)
if score > 0.7 and score > best_score:
best_score = score
best_match = t
# Check fuzzy match against individual words
for word in low.split():
if len(word) > 3: # Only check meaningful words
score = fuzzy_match_score(token, word)
if score > 0.75 and score > best_score:
best_score = score
best_match = t
if best_match:
return best_match
# If no direct match, try heuristics: map some keywords to topics
heuristics = {
"security": ["security", "vulnerability", "exploit", "attack", "auth", "password", "login"],
"billing": ["bill", "invoice", "payment", "charge", "price", "cost"],
"installation": ["install", "setup", "deploy", "deployment", "configure"],
"general": ["help", "question", "how", "what", "why", "issue", "problem"]
}
for topic, kws in heuristics.items():
for kw in kws:
if kw in low:
# if topic exists in known topics return it, else skip
if topic in topics:
return topic
return None
def infer_topic_with_embeddings(msg: str, topics: List[str], knowledge_rows: List[dict]) -> Optional[str]:
"""
Use cosine similarity on embeddings to infer the best matching topic.
This provides semantic understanding instead of just keyword matching.
"""
if not embed_model or not topics or not knowledge_rows:
return None
try:
# Compute query embedding
q_emb = embed_model.encode([msg], convert_to_tensor=True, show_progress_bar=False)[0]
# Group knowledge by topic and compute average embedding per topic
topic_embeddings = {}
topic_counts = {}
for kr in knowledge_rows:
t = kr.get("topic", "general")
if t not in topics:
continue
emb_bytes = kr.get("embedding")
if emb_bytes is None:
continue
emb_tensor = bytes_to_tensor(emb_bytes)
if emb_tensor is None:
continue
if t not in topic_embeddings:
topic_embeddings[t] = emb_tensor
topic_counts[t] = 1
else:
topic_embeddings[t] = topic_embeddings[t] + emb_tensor
topic_counts[t] += 1
# Average the embeddings
for t in topic_embeddings:
topic_embeddings[t] = topic_embeddings[t] / topic_counts[t]
if not topic_embeddings:
return None
# Compute cosine similarity with each topic
best_topic = None
best_score = 0.0
for t, t_emb in topic_embeddings.items():
try:
score = float(torch.nn.functional.cosine_similarity(q_emb.unsqueeze(0), t_emb.unsqueeze(0), dim=1)[0])
if score > best_score:
best_score = score
best_topic = t
except Exception:
continue
# Only return if confidence is high enough
if best_score > 0.4:
logger.info(f"[topic inference] embedding-based: {best_topic} (score={best_score:.2f})")
return best_topic
except Exception as e:
logger.debug(f"[topic inference] embedding error: {e}")
return None
# -------------------------
# Boilerplate detection & reply helpers
# -------------------------
def is_boilerplate_candidate(s: str) -> bool:
s_low = (s or "").strip().lower()
generic = ["i don't know", "not sure", "maybe", "perhaps", "justiceai is a unified intelligence dashboard"]
if len(s_low) < 8:
return True
return any(g in s_low for g in generic)
def generate_creative_reply(candidates: List[str]) -> str:
all_sent = []
seen = set()
for c in candidates:
for s in re.split(r'(?<=[.?!])\s+', c):
st = s.strip()
if not st or st in seen or is_boilerplate_candidate(st):
continue
seen.add(st)
all_sent.append(st)
if not all_sent:
return "I don't have enough context yet — can you give more details?"
return "\n".join(all_sent[:5])
def detect_mood(text: str) -> str:
lower = (text or "").lower()
positive = ["great", "thanks", "awesome", "happy", "love", "excellent", "cool", "yes", "good"]
negative = ["sad", "bad", "problem", "angry", "hate", "fail", "no", "error", "issue"]
if any(w in lower for w in positive):
return "positive"
if any(w in lower for w in negative):
return "negative"
return "neutral"
def should_append_emoji(user_text: str, reply_text: str, mood: str, flags: Dict) -> str:
if flags.get("toxic"):
return ""
if EMOJIS_AVAILABLE:
try:
cat = get_category_for_mood(mood)
return get_emoji(cat, 0.6)
except Exception:
return ""
return ""
# -------------------------
# TTS: optimized loader and endpoints
# -------------------------
_tts_model = None
_tts_lock = threading.Lock()
_speaker_hash_cache: Dict[str, str] = {}
_tts_loaded_event = threading.Event()
def compute_file_sha256(path: str) -> str:
h = hashlib.sha256()
with open(path, "rb") as f:
while True:
b = f.read(8192)
if not b:
break
h.update(b)
return h.hexdigest()
def get_tts_model_blocking():
global _tts_model
if not TTS_AVAILABLE:
raise RuntimeError("TTS.api not available on server")
with _tts_lock:
if _tts_model is None:
model_name = os.environ.get("TTS_MODEL_NAME", TTS_MODEL_NAME)
device = os.environ.get("TTS_DEVICE", TTS_DEVICE)
logger.info(f"[TTS] Loading model {model_name} on device {device}")
_tts_model = TTS(model_name)
try:
if device and torch is not None:
if device.startswith("cuda") and torch.cuda.is_available():
try:
_tts_model.to(device)
except Exception:
pass
try:
torch.backends.cudnn.benchmark = True
except Exception:
pass
if TTS_USE_HALF:
try:
if hasattr(_tts_model, "model") and hasattr(_tts_model.model, "half"):
_tts_model.model.half()
except Exception:
pass
try:
torch.set_num_threads(int(os.environ.get("TORCH_NUM_THREADS", "4")))
except Exception:
pass
else:
try:
torch.set_num_threads(int(os.environ.get("TORCH_NUM_THREADS", "4")))
except Exception:
pass
except Exception as e:
logger.debug(f"[TTS] model device tuning warning: {e}")
logger.info("[TTS] model loaded")
_tts_loaded_event.set()
return _tts_model
def _save_upload_file_tmp(upload_file: UploadFile) -> str:
suffix = os.path.splitext(upload_file.filename)[1] or ".wav"
fd, tmp_path = tempfile.mkstemp(suffix=suffix, prefix="tts_speaker_")
os.close(fd)
with open(tmp_path, "wb") as f:
content = upload_file.file.read()
f.write(content)
return tmp_path
# Preload TTS in background (best-effort)
if TTS_AVAILABLE:
threading.Thread(target=lambda: (get_tts_model_blocking()), daemon=True).start()
# /speak_json and /speak endpoints
@app.post("/speak_json")
async def speak_json(background_tasks: BackgroundTasks, payload: dict = Body(...)):
text = payload.get("text", "")
if not text or not text.strip():
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Field 'text' is required")
voice_b64 = payload.get("voice_wav_b64")
language = payload.get("language")
speaker_path = None
if voice_b64:
try:
data = base64.b64decode(voice_b64)
fd, speaker_path = tempfile.mkstemp(suffix=".wav", prefix="tts_speaker_json_")
os.close(fd)
with open(speaker_path, "wb") as f:
f.write(data)
speaker_hash = compute_file_sha256(speaker_path)
cached = _speaker_hash_cache.get(speaker_hash)
if cached and os.path.exists(cached):
try:
os.remove(speaker_path)
except Exception:
pass
speaker_path = cached
else:
_speaker_hash_cache[speaker_hash] = speaker_path
background_tasks.add_task(lambda p: os.path.exists(p) and os.remove(p), speaker_path)
except Exception:
raise HTTPException(status_code=400, detail="Invalid base64 in 'voice_wav_b64'")
out_fd, out_path = tempfile.mkstemp(suffix=".wav", prefix="tts_out_json_")
os.close(out_fd)
background_tasks.add_task(lambda p: os.path.exists(p) and os.remove(p), out_path)
try:
tts = get_tts_model_blocking()
except Exception:
try:
if os.path.exists(out_path): os.remove(out_path)
except Exception:
pass
raise HTTPException(status_code=500, detail="TTS model not available")
def synth():
kwargs = {}
if speaker_path:
kwargs["speaker_wav"] = speaker_path
if language:
kwargs["language"] = language
tts.tts_to_file(text=text, file_path=out_path, **kwargs)
return out_path
loop = asyncio.get_running_loop()
try:
await loop.run_in_executor(None, synth)
except Exception:
try:
if os.path.exists(out_path): os.remove(out_path)
except Exception:
pass
raise HTTPException(status_code=500, detail="TTS synthesis failed")
return FileResponse(path=out_path, filename=f"speech-{uuid.uuid4().hex}.wav", media_type="audio/wav", background=background_tasks)
if HAVE_MULTIPART:
@app.post("/speak")
async def speak(
background_tasks: BackgroundTasks,
text: str = Form(...),
voice_wav: Optional[UploadFile] = File(None),
language: Optional[str] = Form(None),
):
if not text or not text.strip():
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Field 'text' is required")
if not TTS_AVAILABLE:
raise HTTPException(status_code=status.HTTP_503_SERVICE_UNAVAILABLE, detail="TTS engine not available on server. Please install TTS library.")
speaker_path = None
if voice_wav is not None:
try:
speaker_path = _save_upload_file_tmp(voice_wav)
speaker_hash = compute_file_sha256(speaker_path)
cached = _speaker_hash_cache.get(speaker_hash)
if cached and os.path.exists(cached):
try:
os.remove(speaker_path)
except Exception:
pass
speaker_path = cached
else:
_speaker_hash_cache[speaker_hash] = speaker_path
except Exception as e:
logger.error(f"Voice sample processing failed: {e}")
raise HTTPException(status_code=500, detail=f"Failed to process uploaded voice sample: {str(e)}")
out_fd, out_path = tempfile.mkstemp(suffix=".wav", prefix="tts_out_")
os.close(out_fd)
background_tasks.add_task(lambda p: os.path.exists(p) and os.remove(p), out_path)
try:
tts = get_tts_model_blocking()
except Exception as e:
logger.error(f"TTS model loading failed: {e}")
try:
if os.path.exists(out_path): os.remove(out_path)
except Exception:
pass
raise HTTPException(status_code=503, detail=f"TTS model not available: {str(e)}")
kwargs = {}
if speaker_path:
kwargs["speaker_wav"] = speaker_path
if language:
kwargs["language"] = language
try:
if torch is not None and torch.cuda.is_available() and TTS_USE_HALF:
try:
with torch.inference_mode():
with torch.cuda.amp.autocast():
tts.tts_to_file(text=text, file_path=out_path, **kwargs)
except Exception as e:
logger.warning(f"GPU synthesis failed, trying CPU: {e}")
with torch.inference_mode():
tts.tts_to_file(text=text, file_path=out_path, **kwargs)
else:
if torch is not None:
with torch.inference_mode():
tts.tts_to_file(text=text, file_path=out_path, **kwargs)
else:
tts.tts_to_file(text=text, file_path=out_path, **kwargs)
except Exception as e:
logger.error(f"TTS synthesis failed: {e}")
try:
if os.path.exists(out_path): os.remove(out_path)
except Exception:
pass
raise HTTPException(status_code=500, detail=f"TTS synthesis failed: {str(e)}")
filename = f"speech-{uuid.uuid4().hex}.wav"
return FileResponse(path=out_path, filename=filename, media_type="audio/wav", background=background_tasks)
else:
@app.post("/speak")
async def speak_unavailable():
raise HTTPException(
status_code=501,
detail="Multipart support not available. Install python-multipart (pip install python-multipart) to enable /speak with file uploads. Use /speak_json with base64-encoded speaker sample instead."
)
# -------------------------
# Image Editor: endpoints using the new image_editor module
# -------------------------
@app.post("/image_edit_json")
async def image_edit_json(background_tasks: BackgroundTasks, payload: dict = Body(...)):
"""
JSON endpoint for advanced image editing with AI capabilities.
Body:
{
"image_b64": "<base64 encoded image bytes>" OR "image_url": "http://...",
"operations": [ {op definitions} ],
"prompt": "natural language edit request (e.g., 'add text: Hello', 'blur background')",
"format": "png" # optional
}
Returns: edited image file response.
"""
if not IMAGE_EDITOR_AVAILABLE or image_editor is None:
raise HTTPException(status_code=503, detail="Image editing requires Pillow. Install with pip install pillow")
image_b64 = payload.get("image_b64")
image_url = payload.get("image_url")
operations = payload.get("operations", [])
prompt = payload.get("prompt", "")
out_format = (payload.get("format") or "png").lower()
# Parse natural language prompt into operations using image_editor
if prompt and not operations:
operations = image_editor.parse_edit_prompt(prompt)
if not image_b64 and not image_url:
raise HTTPException(status_code=400, detail="Provide either image_b64 or image_url")
in_fd, in_path = tempfile.mkstemp(suffix=".input")
os.close(in_fd)
try:
if image_b64:
try:
data = base64.b64decode(image_b64)
except Exception:
raise HTTPException(status_code=400, detail="Invalid base64 for image_b64")
with open(in_path, "wb") as f:
f.write(data)
else:
try:
resp = requests.get(image_url, timeout=10)
if resp.status_code != 200:
raise HTTPException(status_code=400, detail="Failed to download image_url")
with open(in_path, "wb") as f:
f.write(resp.content)
except Exception:
raise HTTPException(status_code=400, detail="Failed to download image_url")
except HTTPException:
try:
if os.path.exists(in_path): os.remove(in_path)
except Exception:
pass
raise
except Exception:
try:
if os.path.exists(in_path): os.remove(in_path)
except Exception:
pass
raise HTTPException(status_code=500, detail="Failed to save input image")
ext = "." + out_format if not out_format.startswith(".") else out_format
out_fd, out_path = tempfile.mkstemp(suffix=ext, prefix="img_edit_out_")
os.close(out_fd)
background_tasks.add_task(lambda p: os.path.exists(p) and os.remove(p), out_path)
background_tasks.add_task(lambda p: os.path.exists(p) and os.remove(p), in_path)
try:
loop = asyncio.get_running_loop()
await loop.run_in_executor(None, lambda: image_editor.perform_operations(in_path, operations, out_path))
except Exception as e:
logger.exception("Image edit failed")
try:
if os.path.exists(out_path): os.remove(out_path)
except Exception:
pass
raise HTTPException(status_code=500, detail=f"Image edit failed: {e}")
return FileResponse(path=out_path, filename=f"image-{uuid.uuid4().hex}{ext}", media_type="image/png", background=background_tasks)
if HAVE_MULTIPART:
@app.post("/image_edit")
async def image_edit(
background_tasks: BackgroundTasks,
operations: str = Form(...), # JSON string describing ops
image: Optional[UploadFile] = File(None),
image_url: Optional[str] = Form(None),
format: Optional[str] = Form("png"),
):
if not IMAGE_EDITOR_AVAILABLE or image_editor is None:
raise HTTPException(status_code=503, detail="Image editing requires Pillow. Install with pip install pillow")
try:
ops = json.loads(operations) if operations else []
except Exception:
raise HTTPException(status_code=400, detail="Invalid JSON in operations")
if image is None and not image_url:
raise HTTPException(status_code=400, detail="Provide uploaded image file or image_url")
in_fd, in_path = tempfile.mkstemp(suffix=".input")
os.close(in_fd)
try:
if image is not None:
content = await image.read()
with open(in_path, "wb") as f:
f.write(content)
else:
try:
resp = requests.get(image_url, timeout=10)
if resp.status_code != 200:
raise HTTPException(status_code=400, detail="Failed to download image_url")
with open(in_path, "wb") as f:
f.write(resp.content)
except Exception:
raise HTTPException(status_code=400, detail="Failed to download image_url")
except HTTPException:
try:
if os.path.exists(in_path): os.remove(in_path)
except Exception:
pass
raise
except Exception:
try:
if os.path.exists(in_path): os.remove(in_path)
except Exception:
pass
raise HTTPException(status_code=500, detail="Failed to save uploaded image")
out_ext = "." + (format or "png").lstrip(".")
out_fd, out_path = tempfile.mkstemp(suffix=out_ext, prefix="img_edit_out_")
os.close(out_fd)
background_tasks.add_task(lambda p: os.path.exists(p) and os.remove(p), out_path)
background_tasks.add_task(lambda p: os.path.exists(p) and os.remove(p), in_path)
try:
loop = asyncio.get_running_loop()
await loop.run_in_executor(None, lambda: image_editor.perform_operations(in_path, ops, out_path))
except Exception as e:
logger.exception("Image edit failed (multipart)")
try:
if os.path.exists(out_path): os.remove(out_path)
except Exception:
pass
raise HTTPException(status_code=500, detail=f"Image edit failed: {e}")
return FileResponse(path=out_path, filename=f"image-{uuid.uuid4().hex}{out_ext}", media_type="image/png", background=background_tasks)
else:
@app.post("/image_edit")
async def image_edit_unavailable():
raise HTTPException(
status_code=501,
detail="Multipart support not available. Install python-multipart (pip install python-multipart) to enable /image_edit with uploads. Use /image_edit_json instead."
)
# -------------------------
# Metrics, language.bin, and small helpers
# -------------------------
recent_request_times = deque()
recent_learning_timestamps = deque()
response_time_ema: Optional[float] = None
EMA_ALPHA = 0.2
def record_request(duration_s: float):
global response_time_ema
ts = time.time()
recent_request_times.append((ts, duration_s))
while recent_request_times and recent_request_times[0][0] < ts - 3600:
recent_request_times.popleft()
if response_time_ema is None:
response_time_ema = duration_s
else:
response_time_ema = EMA_ALPHA * duration_s + (1 - EMA_ALPHA) * response_time_ema
def record_learn_event():
ts = time.time()
recent_learning_timestamps.append(ts)
while recent_learning_timestamps and recent_learning_timestamps[0] < ts - 3600:
recent_learning_timestamps.popleft()
@app.get("/metrics")
async def metrics():
try:
with engine_knowledge.connect() as c:
k = c.execute(sql_text("SELECT COUNT(*) FROM knowledge")).scalar() or 0
except Exception:
k = -1
try:
with engine_user.connect() as c:
u = c.execute(sql_text("SELECT COUNT(*) FROM user_memory")).scalar() or 0
except Exception:
u = -1
reqs_last_hour = sum(1 for ts, _ in recent_request_times if ts >= time.time() - 3600) if 'recent_request_times' in globals() else 0
return {
"ok": True,
"uptime_s": round(time.time() - app_start_time, 2) if 'app_start_time' in globals() else None,
"knowledge_count": int(k),
"user_memory_count": int(u),
"requests_last_hour": int(reqs_last_hour)
}
@app.get("/language.bin")
async def language_bin():
path = "language.bin"
if os.path.exists(path):
return FileResponse(path, media_type="application/octet-stream")
return JSONResponse(status_code=404, content={"error": "language.bin not found", "hint": "Place file at ./language.bin or upload it"})
# -------------------------
# Startup warmups
# -------------------------
@app.on_event("startup")
async def startup_event():
logger.info("[JusticeAI] startup: warming optional components")
if SentenceTransformer is not None:
def warm_embed():
try:
try_load_embed()
except Exception as e:
logger.debug(f"[startup] embed warmup error: {e}")
threading.Thread(target=warm_embed, daemon=True).start()
if OLLAMA_AUTO_PULL and ollama_cli_available():
try:
subprocess.run(["ollama", "pull", OLLAMA_MODEL], timeout=300)
logger.info("[startup] attempted ollama pull")
except Exception as e:
logger.debug(f"[startup] ollama pull failed: {e}")
logger.info("[JusticeAI] startup complete")
# -------------------------
# Knowledge endpoints (add/add-bulk/leaderboard/reembed/model-status/health)
# -------------------------
def _require_admin(x_admin_key: Optional[str]):
if ADMIN_KEY is None:
raise HTTPException(status_code=403, detail="Server not configured for admin operations.")
if not x_admin_key or x_admin_key != ADMIN_KEY:
raise HTTPException(status_code=403, detail="Invalid admin key.")
@app.post("/add")
async def add_knowledge(data: dict = Body(...), x_admin_key: Optional[str] = Header(None, alias="X-Admin-Key")):
"""
Add a single knowledge entry.
Requires X-Admin-Key header matching ADMIN_KEY.
Body fields:
- text: required
- reply: optional
- topic: required
"""
# enforce admin
try:
_require_admin(x_admin_key)
except HTTPException:
# keep previous behavior of returning JSONResponse for auth failure
return JSONResponse(status_code=403, content={"error": "Invalid or missing admin key."})
if not isinstance(data, dict):
return JSONResponse(status_code=400, content={"error": "Invalid body"})
text_data = sanitize_knowledge_text(data.get("text", "") or "")
reply = sanitize_knowledge_text(data.get("reply", "") or "")
topic = str(data.get("topic", "") or "").strip()
if not topic:
return JSONResponse(status_code=400, content={"error": "Topic is required"})
if not text_data:
return JSONResponse(status_code=400, content={"error": "Text is required"})
detected = detect_language_safe(text_data) or "und"
if detected not in ("en", "eng", "und"):
try:
text_data = translate_to_english(text_data, detected)
detected = "en"
except Exception:
return JSONResponse(status_code=400, content={"error": "translation failed"})
emb_bytes = None
if embed_model is not None:
try:
emb_bytes = await run_blocking_with_timeout(lambda: embed_to_bytes(text_data), timeout=MODEL_TIMEOUT)
except Exception:
emb_bytes = None
# Use proper parameter binding. For SQLite, bytes are accepted.
try:
with engine_knowledge.begin() as conn:
if emb_bytes:
conn.execute(sql_text(
"INSERT INTO knowledge (text, reply, language, embedding, category, topic, confidence, meta, source) "
"VALUES (:t, :r, :lang, :e, 'manual', :topic, :conf, :meta, :source)"
), {"t": text_data, "r": reply, "lang": detected, "e": emb_bytes, "topic": topic, "conf": 0.9, "meta": json.dumps({"manual": True}), "source": "admin"})
else:
conn.execute(sql_text(
"INSERT INTO knowledge (text, reply, language, category, topic, confidence, meta, source) "
"VALUES (:t, :r, :lang, 'manual', :topic, :conf, :meta, :source)"
), {"t": text_data, "r": reply, "lang": detected, "topic": topic, "conf": 0.9, "meta": json.dumps({"manual": True}), "source": "admin"})
record_learn_event()
return {"status": "✅ Knowledge added", "text": text_data, "topic": topic, "language": detected}
except Exception as e:
logger.exception("add failed")
return JSONResponse(status_code=500, content={"error": "failed to store knowledge", "details": str(e)})
@app.post("/add-bulk")
async def add_bulk(data: List[dict] = Body(...), x_admin_key: Optional[str] = Header(None, alias="X-Admin-Key")):
"""
Add many knowledge entries. Requires admin key.
"""
try:
_require_admin(x_admin_key)
except HTTPException:
return JSONResponse(status_code=403, content={"error": "Invalid or missing admin key."})
if not isinstance(data, list):
return JSONResponse(status_code=400, content={"error": "Expected an array"})
added = 0
errors = []
for i, it in enumerate(data):
try:
if not isinstance(it, dict):
errors.append({"index": i, "error": "not object"}); continue
text_data = sanitize_knowledge_text(it.get("text", "") or "")
topic = str(it.get("topic", "") or "").strip()
reply = sanitize_knowledge_text(it.get("reply", "") or "")
if not text_data or not topic:
errors.append({"index": i, "error": "missing text or topic"}); continue
detected = detect_language_safe(text_data) or "und"
if detected not in ("en", "eng", "und"):
errors.append({"index": i, "error": "non-english; skip"}); continue
emb_bytes = None
if embed_model is not None:
try:
emb_bytes = await run_blocking_with_timeout(lambda: embed_to_bytes(text_data), timeout=MODEL_TIMEOUT)
except Exception:
emb_bytes = None
with engine_knowledge.begin() as conn:
if emb_bytes:
conn.execute(sql_text(
"INSERT INTO knowledge (text, reply, language, embedding, category, topic, source) VALUES (:t, :r, :lang, :e, 'manual', :topic, :source)"
), {"t": text_data, "r": reply, "lang": "en", "e": emb_bytes, "topic": topic, "source": "admin"})
else:
conn.execute(sql_text(
"INSERT INTO knowledge (text, reply, language, category, topic, source) VALUES (:t, :r, :lang, 'manual', :topic, :source)"
), {"t": text_data, "r": reply, "lang": "en", "topic": topic, "source": "admin"})
added += 1
except Exception as e:
logger.exception("add-bulk item error")
errors.append({"index": i, "error": str(e)})
if added:
record_learn_event()
return {"added": added, "errors": errors}
@app.get("/leaderboard")
async def leaderboard(topic: str = Query("general")):
t = str(topic or "general").strip() or "general"
try:
with engine_knowledge.begin() as conn:
rows = conn.execute(sql_text("""
SELECT id, text, reply, language, category, confidence, created_at
FROM knowledge
WHERE topic = :topic
ORDER BY confidence DESC, created_at DESC
LIMIT 20
"""), {"topic": t}).fetchall()
out = []
for r in rows:
text_en = r[1] or ""
lang = r[3] or "und"
display_text = text_en
if lang and lang not in ("en", "eng", "", "und"):
try:
display_text = translate_to_english(text_en, lang)
except Exception:
display_text = text_en
created_at = r[6]
out.append({
"id": r[0],
"text": display_text,
"reply": r[2],
"language": lang,
"category": r[4],
"confidence": round(r[5] or 0.0, 2),
"created_at": created_at.isoformat() if hasattr(created_at, "isoformat") else str(created_at)
})
return {"topic": t, "top_20": out}
except Exception as e:
logger.exception("leaderboard failed")
return JSONResponse(status_code=500, content={"error": "failed to fetch leaderboard", "details": str(e)})
@app.post("/reembed")
async def reembed_all(data: dict = Body(...), x_admin_key: str = Header(None, alias="X-Admin-Key")):
if ADMIN_KEY is None:
return JSONResponse(status_code=403, content={"error": "Server not configured for admin operations."})
if x_admin_key != ADMIN_KEY:
return JSONResponse(status_code=403, content={"error": "Invalid admin key."})
if embed_model is None:
return JSONResponse(status_code=503, content={"error": "Embedding model not ready."})
confirm = str(data.get("confirm", "") or "").strip()
if confirm != "REEMBED":
return JSONResponse(status_code=400, content={"error": "confirm token required."})
batch_size = int(data.get("batch_size", 100))
try:
with engine_knowledge.begin() as conn:
rows = conn.execute(sql_text("SELECT id, text FROM knowledge ORDER BY id")).fetchall()
ids_texts = [(r[0], r[1]) for r in rows]
total = len(ids_texts)
updated = 0
for i in range(0, total, batch_size):
batch = ids_texts[i:i+batch_size]
texts = [t for _, t in batch]
try:
embs = await run_blocking_with_timeout(lambda: embed_model.encode(texts, convert_to_tensor=True), timeout=MODEL_TIMEOUT)
except Exception:
embs = None
if embs is None:
continue
for j, (kid, _) in enumerate(batch):
emb_bytes = embs[j].cpu().numpy().tobytes()
with engine_knowledge.begin() as conn:
conn.execute(sql_text("UPDATE knowledge SET embedding = :e, updated_at = CURRENT_TIMESTAMP WHERE id = :id"), {"e": emb_bytes, "id": kid})
updated += 1
return {"status": "✅ Re-embed complete", "total_rows": total, "updated": updated}
except Exception as e:
logger.exception("reembed failed")
return JSONResponse(status_code=500, content={"error": "reembed failed", "details": str(e)})
@app.get("/model-status")
async def model_status():
return {
"embed_loaded": embed_model is not None,
"ollama_cli": ollama_cli_available(),
"ollama_http": ollama_http_available(),
"moderator": moderator is not None,
"language_module": LANGUAGE_MODULE_AVAILABLE,
"tts_available": TTS_AVAILABLE,
"multipart_available": HAVE_MULTIPART,
"pillow_available": PIL_AVAILABLE,
"voicecloner_available": VOICECLONER_AVAILABLE,
"coder_available": CODER_AVAILABLE,
"videogen_available": VIDEOGEN_AVAILABLE,
"image_editor_available": IMAGE_EDITOR_AVAILABLE
}
@app.get("/health")
async def health():
try:
with engine_knowledge.connect() as c:
k = c.execute(sql_text("SELECT COUNT(*) FROM knowledge")).scalar() or 0
except Exception:
k = -1
try:
with engine_user.connect() as c:
u = c.execute(sql_text("SELECT COUNT(*) FROM user_memory")).scalar() or 0
except Exception:
u = -1
return {"ok": True, "knowledge_count": int(k), "user_memory_count": int(u), "uptime_s": round(time.time() - app_start_time, 2), "heartbeat": last_heartbeat}
# -------------------------
# Chat endpoint (topic-scoped, user-memory isolated)
# -------------------------
@app.post("/chat")
async def chat(request: Request, data: dict = Body(...)):
t0 = time.time()
# Performance optimization: Use caching
cache_key = None
if isinstance(data, dict):
msg = str(data.get("message", "") or data.get("text", "") or "").strip()
if msg:
cache_key = hashlib.md5(msg.encode()).hexdigest()
# Accept both "message" and "text"
if isinstance(data, dict):
raw_msg = str(data.get("message", "") or data.get("text", "") or "").strip()
else:
raw_msg = str(data or "").strip()
if not raw_msg:
record_request(time.time() - t0)
return JSONResponse(status_code=400, content={"error": "Empty message"})
username = data.get("username", "anonymous") if isinstance(data, dict) else "anonymous"
user_ip = request.client.host if request.client else "0.0.0.0"
user_id = hashlib.sha256(f"{user_ip}-{username}".encode()).hexdigest()
topic_hint = str(data.get("topic", "") or "").strip() if isinstance(data, dict) else ""
include_steps = bool(data.get("include_steps", False) if isinstance(data, dict) else False)
detected_lang = detect_language_safe(raw_msg)
reply_lang = detected_lang if detected_lang and detected_lang != "und" else "en"
# Translate incoming to English for retrieval if needed
en_msg = raw_msg
if detected_lang not in ("en", "eng", "", "und"):
try:
en_msg = translate_to_english(raw_msg, detected_lang)
except Exception:
en_msg = raw_msg
# Load ALL knowledge entries first (needed for embedding-based topic inference)
try:
with engine_knowledge.begin() as conn:
all_rows = conn.execute(sql_text("SELECT id, text, reply, language, embedding, topic FROM knowledge ORDER BY created_at DESC")).fetchall()
except Exception as e:
record_request(time.time() - t0)
return JSONResponse(status_code=500, content={"error": "failed to read knowledge", "details": str(e)})
all_knowledge_rows = [{"id": r[0], "text": r[1] or "", "reply": r[2] or "", "lang": r[3] or "und", "embedding": r[4], "topic": r[5] or "general"} for r in all_rows]
# Get list of known topics
known_topics = list(set([kr.get("topic", "general") for kr in all_knowledge_rows if kr.get("topic")]))
# Determine topic: Embeddings first (best), then Ollama, then keyword matching
topic = "general"
try:
if not topic_hint:
chosen = None
# 1. Try embedding-based topic inference (BEST - semantic understanding)
if embed_model is not None and all_knowledge_rows:
try:
chosen = infer_topic_with_embeddings(en_msg, known_topics, all_knowledge_rows)
if chosen:
logger.info(f"[topic] Selected via embeddings: {chosen}")
except Exception as e:
logger.debug(f"[topic] embedding inference failed: {e}")
# 2. Fallback to Ollama if embeddings didn't work
if not chosen:
try:
if (ollama_http_available() or ollama_cli_available()) and known_topics:
possible = infer_topic_with_ollama(en_msg, known_topics)
if possible:
chosen = possible
logger.info(f"[topic] Selected via Ollama: {chosen}")
except Exception as e:
logger.debug(f"[topic] ollama inference failed: {e}")
# 3. Final fallback to keyword/fuzzy matching
if not chosen:
chosen = infer_topic_from_message(en_msg, known_topics)
if chosen:
logger.info(f"[topic] Selected via keyword/fuzzy: {chosen}")
topic = chosen or "general"
else:
topic = topic_hint or "general"
except Exception as e:
logger.warning(f"[topic] inference error: {e}")
topic = topic_hint or "general"
logger.info(f"[chat] Final topic: {topic}")
# Moderation
flags = {}
try:
if moderator is not None:
mod_res = moderator(raw_msg[:1024])
if isinstance(mod_res, list) and mod_res:
lbl = mod_res[0].get('label', '').lower()
sc = float(mod_res[0].get('score', 0.0))
if 'toxic' in lbl or sc > 0.85:
flags['toxic'] = True
except Exception:
pass
# Filter knowledge entries for this topic only
knowledge_rows = [kr for kr in all_knowledge_rows if kr.get("topic") == topic]
# Retrieval using cosine similarity with spell tolerance
matches: List[str] = []
confidence = 0.0
match_lang = "en"
try:
# If we have an embed model, use semantic similarity (BEST approach)
if embed_model is not None and knowledge_rows:
stored_embs = []
stored_indices = []
# Collect stored embeddings
for i, kr in enumerate(knowledge_rows):
if kr.get("embedding") is not None:
t = bytes_to_tensor(kr["embedding"])
if t is not None:
stored_embs.append(t)
stored_indices.append(i)
# Use stored embeddings if available
if torch is not None and stored_embs:
try:
# Stack stored embeddings
embs_tensor = torch.stack(stored_embs)
# Compute query embedding
q_emb = await run_blocking_with_timeout(
lambda: embed_model.encode([en_msg], convert_to_tensor=True, show_progress_bar=False)[0],
timeout=MODEL_TIMEOUT
)
if not isinstance(q_emb, torch.Tensor):
q_emb = torch.from_numpy(q_emb.cpu().numpy())
# Compute cosine similarity
try:
scores = torch.nn.functional.cosine_similarity(q_emb.unsqueeze(0), embs_tensor, dim=1)
except Exception:
scores = torch.nn.functional.cosine_similarity(embs_tensor, q_emb.unsqueeze(0), dim=1)
# Collect candidates with scores
cand = []
for idx, s in enumerate(scores):
i_orig = stored_indices[idx]
kr = knowledge_rows[i_orig]
candidate_text = (kr["reply"] or kr["text"]).strip()
if is_boilerplate_candidate(candidate_text):
continue
s_float = float(s)
# Lower threshold for better recall
if s_float >= 0.25:
cand.append({
"text": candidate_text,
"lang": kr["lang"],
"score": s_float
})
# Sort by score
cand = sorted(cand, key=lambda x: -x["score"])
matches = [c["text"] for c in cand[:5]] # Top 5 matches
confidence = float(cand[0]["score"]) if cand else 0.0
match_lang = cand[0]["lang"] if cand else "en"
logger.info(f"[retrieval] Found {len(matches)} matches via embeddings, best score: {confidence:.2f}")
except asyncio.TimeoutError:
logger.warning("[retrieval] embedding encode timed out")
except Exception as e:
logger.warning(f"[retrieval] embedding error: {e}")
# Fallback: compute embeddings on the fly if no stored embeddings
if not matches and knowledge_rows:
try:
texts = [kr["text"] for kr in knowledge_rows]
embs = await run_blocking_with_timeout(
lambda: embed_model.encode(texts, convert_to_tensor=True, show_progress_bar=False),
timeout=MODEL_TIMEOUT
)
q_emb = await run_blocking_with_timeout(
lambda: embed_model.encode([en_msg], convert_to_tensor=True, show_progress_bar=False)[0],
timeout=MODEL_TIMEOUT
)
try:
scores = torch.nn.functional.cosine_similarity(q_emb.unsqueeze(0), embs, dim=1)
except Exception:
scores = torch.nn.functional.cosine_similarity(embs, q_emb.unsqueeze(0), dim=1)
cand = []
for i in range(scores.shape[0]):
s = float(scores[i])
kr = knowledge_rows[i]
candidate_text = (kr["reply"] or kr["text"]).strip()
if is_boilerplate_candidate(candidate_text):
continue
if s >= 0.25:
cand.append({
"text": candidate_text,
"lang": kr["lang"],
"score": s
})
cand = sorted(cand, key=lambda x: -x["score"])
matches = [c["text"] for c in cand[:5]]
confidence = float(cand[0]["score"]) if cand else 0.0
match_lang = cand[0]["lang"] if cand else "en"
logger.info(f"[retrieval] Found {len(matches)} matches via on-the-fly embeddings, best score: {confidence:.2f}")
except asyncio.TimeoutError:
logger.warning("[retrieval] embedding encode timed out")
except Exception as e:
logger.warning(f"[retrieval] embedding error: {e}")
# Final fallback: fuzzy keyword matching with spell tolerance
if not matches and knowledge_rows:
logger.info("[retrieval] Using fuzzy keyword matching fallback")
cand = []
for kr in knowledge_rows:
txt = (kr["reply"] or kr["text"]) or ""
txt_lower = txt.lower()
msg_lower = en_msg.lower()
# Exact substring match
if msg_lower in txt_lower:
if not is_boilerplate_candidate(txt):
cand.append({"text": txt, "lang": kr["lang"], "score": 0.8})
continue
# Fuzzy matching for spell tolerance
if FUZZY_AVAILABLE and len(en_msg) > 3:
# Check fuzzy match against text
fuzzy_score = fuzzy_match_score(en_msg, txt)
if fuzzy_score > 0.6:
if not is_boilerplate_candidate(txt):
cand.append({"text": txt, "lang": kr["lang"], "score": fuzzy_score * 0.7})
continue
# Check fuzzy match against individual words
msg_words = [w for w in msg_lower.split() if len(w) > 3]
txt_words = [w for w in txt_lower.split() if len(w) > 3]
for msg_word in msg_words:
for txt_word in txt_words:
word_score = fuzzy_match_score(msg_word, txt_word)
if word_score > 0.75:
if not is_boilerplate_candidate(txt):
cand.append({"text": txt, "lang": kr["lang"], "score": word_score * 0.5})
break
# Remove duplicates and sort
seen = set()
unique_cand = []
for c in cand:
if c["text"] not in seen:
seen.add(c["text"])
unique_cand.append(c)
cand = sorted(unique_cand, key=lambda x: -x["score"])
matches = [c["text"] for c in cand[:5]]
confidence = float(cand[0]["score"]) if cand else 0.0
match_lang = cand[0]["lang"] if cand else "en"
logger.info(f"[retrieval] Found {len(matches)} matches via fuzzy matching, best score: {confidence:.2f}")
except Exception as e:
logger.warning(f"[retrieval] error: {e}")
matches = []
# Compose reply strictly from topic matches
if matches and confidence >= 0.6:
reply_en = matches[0]
elif matches:
reply_en = generate_creative_reply(matches[:5])
else:
base = "This is outside the project, I can only help with problems related to the project."
if reply_lang and reply_lang not in ("en", "eng", "und"):
try:
base = translate_from_english(base, reply_lang)
except Exception:
pass
reply_final = base
# Persist user memory (even on low confidence), skipping toxic content
try:
if not flags.get('toxic', False):
with engine_user.begin() as conn:
conn.execute(sql_text(
"INSERT INTO user_memory (user_id, username, ip, text, reply, language, mood, confidence, topic, source) "
"VALUES (:uid, :uname, :ip, :text, :reply, :lang, :mood, :conf, :topic, :source)"
), {"uid": user_id, "uname": username, "ip": user_ip, "text": raw_msg, "reply": reply_final, "lang": detected_lang,
"mood": detect_mood(raw_msg + " " + reply_final), "conf": float(confidence), "topic": topic, "source": "chat"})
conn.execute(sql_text(
"DELETE FROM user_memory WHERE id NOT IN (SELECT id FROM user_memory WHERE user_id = :uid ORDER BY created_at DESC LIMIT 10) AND user_id = :uid"
), {"uid": user_id})
except Exception as e:
logger.debug(f"user_memory store error: {e}")
record_request(time.time() - t0)
return {"reply": reply_final, "topic": topic, "language": reply_lang, "emoji": "", "confidence": round(confidence,2), "flags": flags}
# Post-process and translate back to user's language
reply_en = dedupe_sentences(reply_en)
reply_final = reply_en
# Determine target language for translation
target_lang = reply_lang if reply_lang and reply_lang not in ("en", "eng", "und", "") else None
# If match was in a different language, try to use that
if match_lang and match_lang not in ("en", "eng", "und", ""):
# If user's language matches the match language, use it
if target_lang and target_lang.split("-")[0].lower() == match_lang.split("-")[0].lower():
target_lang = match_lang
# Translate to user's language
if target_lang:
lang_code = target_lang.split("-")[0].lower()
try:
logger.info(f"[translation] Translating reply from en to {lang_code}")
reply_final = translate_from_english(reply_en, lang_code)
reply_final = dedupe_sentences(reply_final)
logger.info(f"[translation] Translation successful")
except Exception as exc:
logger.warning(f"[translation] failed to translate reply_en -> {lang_code}: {exc}")
reply_final = reply_en
else:
logger.info("[translation] No translation needed, using English")
# Mood & emoji append
emoji = ""
try:
mood = detect_mood(raw_msg + " " + reply_final)
if EMOJIS_AVAILABLE:
try:
cand = get_emoji(get_category_for_mood(mood), 0.6)
if cand and cand not in reply_final and len(reply_final) + len(cand) < 1200:
reply_final = f"{reply_final} {cand}"
emoji = cand
except Exception:
emoji = ""
except Exception:
emoji = ""
# Persist user memory (only in user DB) and prune to last 10
try:
if not flags.get('toxic', False):
with engine_user.begin() as conn:
conn.execute(sql_text(
"INSERT INTO user_memory (user_id, username, ip, text, reply, language, mood, confidence, topic, source) "
"VALUES (:uid, :uname, :ip, :text, :reply, :lang, :mood, :conf, :topic, :source)"
), {"uid": user_id, "uname": username, "ip": user_ip, "text": raw_msg, "reply": reply_final, "lang": detected_lang,
"mood": detect_mood(raw_msg + " " + reply_final), "conf": float(confidence), "topic": topic, "source": "chat"})
conn.execute(sql_text(
"DELETE FROM user_memory WHERE id NOT IN (SELECT id FROM user_memory WHERE user_id = :uid ORDER BY created_at DESC LIMIT 10) AND user_id = :uid"
), {"uid": user_id})
except Exception as e:
logger.debug(f"user_memory persist error: {e}")
duration = time.time() - t0
record_request(duration)
if include_steps:
reply_final = f"{reply_final}\n\n[Debug: topic={topic} confidence={round(confidence,2)}]"
return {"reply": reply_final, "topic": topic, "language": reply_lang, "emoji": emoji, "confidence": round(confidence,2), "flags": flags}
@app.post("/response")
async def response_wrapper(request: Request, data: dict = Body(...)):
return await chat(request, data)
@app.post("/verify-admin")
async def verify_admin(x_admin_key: str = Header(None, alias="X-Admin-Key")):
if ADMIN_KEY is None:
return JSONResponse(status_code=403, content={"error": "Server not configured for admin operations."})
if not x_admin_key or x_admin_key != ADMIN_KEY:
return JSONResponse(status_code=403, content={"valid": False, "error": "Invalid or missing admin key."})
return {"valid": True}
@app.post("/cleardatabase")
async def clear_database(data: dict = Body(...), x_admin_key: str = Header(None, alias="X-Admin-Key")):
if ADMIN_KEY is None:
return JSONResponse(status_code=403, content={"error": "Server not configured for admin operations."})
if x_admin_key != ADMIN_KEY:
return JSONResponse(status_code=403, content={"error": "Invalid admin key."})
confirm = str(data.get("confirm", "") or "").strip()
if confirm != "CLEAR_DATABASE":
return JSONResponse(status_code=400, content={"error": "confirm token required."})
try:
with engine_knowledge.begin() as conn:
k_count = conn.execute(sql_text("SELECT COUNT(*) FROM knowledge")).scalar() or 0
conn.execute(sql_text("DELETE FROM knowledge"))
with engine_user.begin() as conn:
u_count = conn.execute(sql_text("SELECT COUNT(*) FROM user_memory")).scalar() or 0
conn.execute(sql_text("DELETE FROM user_memory"))
return {"status": "✅ Cleared database", "deleted_knowledge": int(k_count), "deleted_user_memory": int(u_count)}
except Exception as e:
logger.exception("clear failed")
return JSONResponse(status_code=500, content={"error": "failed to clear database", "details": str(e)})
# -------------------------
# Coder endpoints
# -------------------------
@app.post("/coder/run")
async def coder_run_code(data: dict = Body(...)):
"""Execute code in sandbox"""
if not CODER_AVAILABLE or coder_instance is None:
raise HTTPException(status_code=503, detail="Coder module not available")
code = data.get("code", "")
lang = data.get("language", "python")
timeout = int(data.get("timeout", 15))
if not code:
raise HTTPException(status_code=400, detail="Code is required")
try:
result = coder_instance.run_code(code, lang, timeout)
return result
except Exception as e:
logger.exception("Coder run failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.post("/coder/debug")
async def coder_debug_code(data: dict = Body(...)):
"""Debug code in sandbox"""
if not CODER_AVAILABLE or coder_instance is None:
raise HTTPException(status_code=503, detail="Coder module not available")
code = data.get("code", "")
lang = data.get("language", "python")
if not code:
raise HTTPException(status_code=400, detail="Code is required")
try:
result = coder_instance.debug_code(code, lang)
return result
except Exception as e:
logger.exception("Coder debug failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.post("/coder/fix")
async def coder_fix_code(data: dict = Body(...)):
"""Automatically fix code issues"""
if not CODER_AVAILABLE or coder_instance is None:
raise HTTPException(status_code=503, detail="Coder module not available")
code = data.get("code", "")
lang = data.get("language", "python")
if not code:
raise HTTPException(status_code=400, detail="Code is required")
try:
result = coder_instance.fix_code(code, lang)
return result
except Exception as e:
logger.exception("Coder fix failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.post("/generate")
async def generate_code(data: dict = Body(...)):
"""Generate code from natural language request"""
if not CODER_AVAILABLE:
raise HTTPException(
status_code=503,
detail="Coder module not available. Please check server logs and ensure all dependencies are installed."
)
if coder_instance is None:
raise HTTPException(
status_code=503,
detail="Coder instance not initialized. Please restart the server."
)
request = data.get("request", "")
lang = data.get("language", "python")
if not request:
raise HTTPException(status_code=400, detail="Request is required")
try:
result = coder_instance.generate_code(request, lang)
return result
except AttributeError as e:
logger.exception("Code generation failed - method not found")
return JSONResponse(
status_code=500,
content={"error": f"Code generation method not available: {str(e)}"}
)
except Exception as e:
logger.exception("Code generation failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.post("/coder/preview/start")
async def coder_start_preview(data: dict = Body(...)):
"""Start preview server"""
if not CODER_AVAILABLE or coder_instance is None:
raise HTTPException(status_code=503, detail="Coder module not available")
lang = data.get("language", "html")
port = int(data.get("port", 8000))
html_content = data.get("html") # optional HTML body
try:
result = coder_instance.start_preview(lang=lang, port=port, html_content=html_content)
return result
except Exception as e:
logger.exception("Preview start failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.post("/coder/preview/stop")
async def coder_stop_preview():
"""Stop preview server"""
if not CODER_AVAILABLE or coder_instance is None:
raise HTTPException(status_code=503, detail="Coder module not available")
try:
result = coder_instance.stop_preview()
return result
except Exception as e:
logger.exception("Preview stop failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.get("/coder/preview/info")
async def coder_preview_info():
"""Get preview server info"""
if not CODER_AVAILABLE or coder_instance is None:
raise HTTPException(status_code=503, detail="Coder module not available")
try:
result = coder_instance.get_preview_info()
return result
except Exception as e:
logger.exception("Preview info failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.post("/coder/file/write")
async def coder_write_file(data: dict = Body(...)):
"""Write file to sandbox"""
if not CODER_AVAILABLE or coder_instance is None:
raise HTTPException(status_code=503, detail="Coder module not available")
filename = data.get("filename", "")
content = data.get("content", "")
if not filename:
raise HTTPException(status_code=400, detail="Filename is required")
try:
result = coder_instance.write_file(filename, content)
return result
except Exception as e:
logger.exception("File write failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.post("/coder/file/read")
async def coder_read_file(data: dict = Body(...)):
"""Read file from sandbox"""
if not CODER_AVAILABLE or coder_instance is None:
raise HTTPException(status_code=503, detail="Coder module not available")
filename = data.get("filename", "")
if not filename:
raise HTTPException(status_code=400, detail="Filename is required")
try:
result = coder_instance.read_file(filename)
return result
except Exception as e:
logger.exception("File read failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.get("/coder/files")
async def coder_list_files():
"""List files in sandbox"""
if not CODER_AVAILABLE or coder_instance is None:
raise HTTPException(status_code=503, detail="Coder module not available")
try:
result = coder_instance.list_files()
return result
except Exception as e:
logger.exception("File list failed")
return JSONResponse(status_code=500, content={"error": str(e)})
# -------------------------
# Video Generator endpoints
# -------------------------
@app.post("/video/generate")
async def video_generate(background_tasks: BackgroundTasks, data: dict = Body(...)):
"""Generate video from prompt"""
if not VIDEOGEN_AVAILABLE or video_generator is None:
raise HTTPException(status_code=503, detail="Video generator not available")
prompt = data.get("prompt", "")
num_frames = int(data.get("num_frames", 16))
fps = int(data.get("fps", 8))
enhance = bool(data.get("enhance", False))
if not prompt:
raise HTTPException(status_code=400, detail="Prompt is required")
try:
loop = asyncio.get_running_loop()
result = await loop.run_in_executor(
None,
lambda: video_generator.generate(
prompt=prompt,
num_frames=num_frames,
fps=fps,
enhance=enhance
)
)
return result
except Exception as e:
logger.exception("Video generation failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.get("/video/history")
async def video_history(limit: int = Query(20)):
"""Get video generation history"""
if not VIDEOGEN_AVAILABLE or video_generator is None:
raise HTTPException(status_code=503, detail="Video generator not available")
try:
history = video_generator.get_history(limit)
return {"history": history}
except Exception as e:
logger.exception("Video history failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.get("/video/status")
async def video_status():
"""Get video generator status"""
if not VIDEOGEN_AVAILABLE or video_generator is None:
raise HTTPException(status_code=503, detail="Video generator not available")
try:
status = video_generator.get_status()
return status
except Exception as e:
logger.exception("Video status failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.get("/", response_class=HTMLResponse)
async def frontend_dashboard():
try:
health = requests.get("http://localhost:7860/health", timeout=1).json()
except Exception:
health = {"status": "starting", "db_status": "unknown", "stars": 0, "db_metrics": {}}
db_metrics = health.get("db_metrics") or {}
knowledge_count = db_metrics.get("knowledge_count", "?")
user_memory_count = db_metrics.get("user_memory_count", "?")
stars = health.get("stars", 0)
hb = last_heartbeat
try:
hb_display = f'{hb.get("time")} (ok={hb.get("ok")})' if isinstance(hb, dict) else str(hb)
except Exception:
hb_display = str(hb)
startup_time_local = round(time.time() - app_start_time, 2)
try:
with open("frontend.html", "r") as f:
html = f.read()
except Exception:
html = "<h1>Frontend file not found</h1>"
html = html.replace("%%HEALTH_STATUS%%", str(health.get("status", "starting")))
html = html.replace("%%KNOWLEDGE_COUNT%%", str(knowledge_count))
html = html.replace("%%USER_MEMORY_COUNT%%", str(user_memory_count))
html = html.replace("%%STARS%%", "⭐" * int(stars) if isinstance(stars, int) else str(stars))
html = html.replace("%%HB_DISPLAY%%", hb_display)
html = html.replace("%%FOOTER_TIME%%", datetime.utcnow().isoformat())
html = html.replace("%%STARTUP_TIME%%", str(startup_time_local))
return HTMLResponse(html)
# -------------------------
# Run server
# -------------------------
if __name__ == "__main__":
# Preload TTS and embeddings in background to reduce first-request latency
if TTS_AVAILABLE:
try:
threading.Thread(target=lambda: get_tts_model_blocking(), daemon=True).start()
except Exception:
pass
if SentenceTransformer is not None:
try:
threading.Thread(target=try_load_embed, daemon=True).start()
except Exception:
pass
app_start_time = time.time()
import uvicorn
port = int(os.environ.get("PORT", 7860))
uvicorn.run("app:app", host="0.0.0.0", port=port, log_level="info")