hotel-cancel-ui / src /streamlit_app.py
RJuro's picture
Upload 3 files
f1baba0 verified
import os
import datetime as dt
import numpy as np
import pandas as pd
import requests
import streamlit as st
# --- CONFIG ---
API_URL = os.getenv("API_URL", "https://rjuro-hotel-cancel-api.hf.space/predict_batch")
NUMERIC_FEATURES = [
'lead_time','arrival_date_week_number','arrival_date_day_of_month',
'stays_in_weekend_nights','stays_in_week_nights','adults','children',
'babies','is_repeated_guest','previous_cancellations',
'previous_bookings_not_canceled','booking_changes','agent',
'days_in_waiting_list','adr','required_car_parking_spaces',
'total_of_special_requests','total_guests','total_nights','is_summer',
'previous_cancellation_rate'
]
CATEGORICAL_FEATURES = [
'hotel','meal','market_segment','distribution_channel',
'reserved_room_type','deposit_type','customer_type'
]
ALL_FEATURES = NUMERIC_FEATURES + CATEGORICAL_FEATURES
st.set_page_config(page_title="Weekly Cancellation Predictions", layout="wide")
# --- SIMPLE SYNTH GENERATOR ---
def synth_week(n_per_day=300, seed=42):
rng = np.random.default_rng(seed)
today = dt.date.today()
all_rows = []
for i in range(1, 8):
arr = today + dt.timedelta(days=i)
week = int(arr.isocalendar().week)
dom = arr.day
is_summer = int(arr.month in [6,7,8])
n = n_per_day
lead_time = np.clip(rng.gamma(2.0, 60.0, n).astype(int), 1, 365)
wkd = rng.poisson(1.0, n)
wk = rng.poisson(3.0, n)
adults = np.maximum(1, rng.poisson(1.5, n)+1)
children = rng.binomial(2, 0.15, n)
babies = rng.binomial(1, 0.05, n)
is_repeated_guest = rng.binomial(1, 0.12, n)
prev_canc = rng.binomial(2, 0.05, n)
prev_notc = rng.binomial(3, 0.15, n)
booking_changes = rng.poisson(0.2, n)
agent = rng.integers(0, 5, n) # 0≈direct
wait_list = rng.binomial(5, 0.05, n)
adr = np.clip(rng.normal(120, 35, n), 30, 450)
parking = rng.binomial(1, 0.12, n)
special_req = rng.poisson(0.6, n)
total_nights = (wkd + wk).astype(int)
total_guests = (adults + children + babies).astype(int)
prev_rate = prev_canc / np.maximum(1e-6, (prev_canc + prev_notc + 1e-6))
def choice(vals, probs):
p = np.array(probs, dtype=float); p = p / p.sum()
return rng.choice(vals, p=p, size=n)
hotel = choice(['City Hotel','Resort Hotel'], [0.7, 0.3])
meal = choice(['BB','HB','FB','SC'], [0.75,0.15,0.03,0.07])
market = choice(['Online TA','Direct','Corporate','Offline TA/TO'], [0.45,0.30,0.15,0.10])
channel = choice(['TA/TO','Direct','Corporate','GDS'], [0.5,0.3,0.15,0.05])
roomtype = choice(list("ABCDEFG"), [0.35,0.25,0.15,0.1,0.08,0.05,0.02])
deposit = choice(['No Deposit','Non Refund','Refundable'], [0.75,0.15,0.10])
cust = choice(['Transient','Contract','Group','Transient-Party'], [0.7,0.15,0.08,0.07])
df = pd.DataFrame({
'lead_time': lead_time,
'arrival_date_week_number': week,
'arrival_date_day_of_month': dom,
'stays_in_weekend_nights': wkd,
'stays_in_week_nights': wk,
'adults': adults,
'children': children,
'babies': babies,
'is_repeated_guest': is_repeated_guest,
'previous_cancellations': prev_canc,
'previous_bookings_not_canceled': prev_notc,
'booking_changes': booking_changes,
'agent': agent,
'days_in_waiting_list': wait_list,
'adr': adr,
'required_car_parking_spaces': parking,
'total_of_special_requests': special_req,
'total_guests': total_guests,
'total_nights': total_nights,
'is_summer': is_summer,
'previous_cancellation_rate': prev_rate,
'hotel': hotel,
'meal': meal,
'market_segment': market,
'distribution_channel': channel,
'reserved_room_type': roomtype,
'deposit_type': deposit,
'customer_type': cust
})
df.insert(0, "arrival_date", pd.Timestamp(arr))
all_rows.append(df)
return pd.concat(all_rows, ignore_index=True)
def call_api(df: pd.DataFrame) -> np.ndarray:
payload = {"data": df[ALL_FEATURES].to_dict(orient="records")}
r = requests.post(API_URL, json=payload, timeout=60)
r.raise_for_status()
return np.array(r.json()["probabilities"])
# --- UI ---
st.title("Weekly Booking Predictions")
st.caption("API: " + API_URL)
with st.sidebar:
st.header("Simulation")
n_per_day = st.slider("Synthetic bookings per day", 50, 2000, 400, 50)
t_low = st.slider("Reminder threshold", 0.05, 0.60, 0.30, 0.01)
t_high = st.slider("Perk (prepay upgrade) threshold", 0.30, 0.95, 0.65, 0.01)
seed = st.number_input("Random seed", 0, 99999, 42, 1)
st.caption("Rules: p ≥ t_high → Perk; t_low ≤ p < t_high → Reminder; else → None.")
cols = st.columns(2)
with cols[0]:
if st.button("Generate & Predict", use_container_width=True):
df = synth_week(n_per_day=n_per_day, seed=int(seed))
probs = call_api(df)
df['pred_cancel_prob'] = probs
df['action'] = np.where(
probs >= t_high, "Perk-Upgrade (Prepay)",
np.where(probs >= t_low, "Reminder", "None")
)
daily = (
df.groupby(df['arrival_date'].dt.date)
.agg(n_bookings=('arrival_date','count'),
mean_risk=('pred_cancel_prob','mean'),
p75=('pred_cancel_prob', lambda x: np.quantile(x, 0.75)),
n_perk=('action', lambda s: (s=="Perk-Upgrade (Prepay)").sum()),
n_reminder=('action', lambda s: (s=="Reminder").sum()),
n_none=('action', lambda s: (s=="None").sum()))
.reset_index()
.rename(columns={'arrival_date':'date'})
)
st.subheader("Daily Summary (Next 7 Days)")
st.dataframe(daily, use_container_width=True, hide_index=True)
st.subheader("Preview: First 200 Bookings with Suggested Actions")
st.dataframe(
df[['arrival_date','hotel','market_segment','deposit_type','lead_time',
'total_nights','total_guests','pred_cancel_prob','action']].head(200),
use_container_width=True, hide_index=True
)
st.download_button(
"Download Full Weekly Predictions (CSV)",
df.to_csv(index=False).encode("utf-8"),
file_name="weekly_predictions_with_actions.csv",
mime="text/csv"
)
with cols[1]:
st.subheader("How it works")
st.markdown(
"- Synthetic bookings for the next 7 days\n"
"- Calls the public FastAPI to get cancellation probabilities\n"
"- Simple rules pick suggested actions"
)