Spaces:
Runtime error
Runtime error
| import cv2 | |
| import einops | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| from diffusers import StableDiffusionControlNetPipeline, ControlNetModel | |
| from diffusers import UniPCMultistepScheduler | |
| from PIL import Image | |
| from controlnet_aux import OpenposeDetector | |
| # Constants | |
| low_threshold = 100 | |
| high_threshold = 200 | |
| # Models | |
| controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16) | |
| pipe_canny = StableDiffusionControlNetPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", controlnet=controlnet_canny, safety_checker=None, torch_dtype=torch.float16 | |
| ) | |
| pipe_canny.scheduler = UniPCMultistepScheduler.from_config(pipe_canny.scheduler.config) | |
| # This command loads the individual model components on GPU on-demand. So, we don't | |
| # need to explicitly call pipe.to("cuda"). | |
| pipe_canny.enable_model_cpu_offload() | |
| pipe_canny.enable_xformers_memory_efficient_attention() | |
| # Generator seed, | |
| generator = torch.manual_seed(0) | |
| pose_model = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") | |
| controlnet_pose = ControlNetModel.from_pretrained( | |
| "lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16 | |
| ) | |
| pipe_pose = StableDiffusionControlNetPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", controlnet=controlnet_pose, safety_checker=None, torch_dtype=torch.float16 | |
| ) | |
| pipe_pose.scheduler = UniPCMultistepScheduler.from_config(pipe_pose.scheduler.config) | |
| # This command loads the individual model components on GPU on-demand. So, we don't | |
| # need to explicitly call pipe.to("cuda"). | |
| pipe_pose.enable_model_cpu_offload() | |
| # xformers | |
| pipe_pose.enable_xformers_memory_efficient_attention() | |
| from pytorch_lightning import seed_everything | |
| from util import resize_image, HWC3, apply_canny | |
| from ldm.models.diffusion.ddim import DDIMSampler | |
| from annotator.openpose import apply_openpose | |
| from cldm.model import create_model, load_state_dict | |
| def get_canny_filter(image): | |
| if not isinstance(image, np.ndarray): | |
| image = np.array(image) | |
| image = cv2.Canny(image, low_threshold, high_threshold) | |
| image = image[: | |
| , :, None] | |
| image = np.concatenate([image, image, image], axis=2) | |
| canny_image = Image.fromarray(image) | |
| return canny_image | |
| def get_pose(image): | |
| return pose_model(image) | |
| def process(input_image, prompt, input_control): | |
| # TODO: Add other control tasks | |
| if input_control == "Scribble": | |
| return process_canny(input_image, prompt) | |
| elif input_control == "Pose": | |
| return process_pose(input_image, prompt) | |
| return process_canny(input_image, prompt) | |
| def process_canny(input_image, prompt): | |
| canny_image = get_canny_filter(input_image) | |
| output = pipe_canny( | |
| prompt, | |
| canny_image, | |
| generator=generator, | |
| num_images_per_prompt=1, | |
| num_inference_steps=20, | |
| ) | |
| return [canny_image,output.images[0]] | |
| def process_pose(input_image, prompt): | |
| pose_image = get_pose(input_image) | |
| output = pipe_pose( | |
| prompt, | |
| pose_image, | |
| generator=generator, | |
| num_images_per_prompt=1, | |
| num_inference_steps=20, | |
| ) | |
| return [pose_image,output.images[0]] | |
| block = gr.Blocks().queue() | |
| control_task_list = [ | |
| "Canny Edge Map", | |
| "Scribble", | |
| "Pose" | |
| ] | |
| with block: | |
| gr.Markdown("## Adding Conditional Control to Text-to-Image Diffusion Models") | |
| gr.HTML(''' | |
| <p style="margin-bottom: 10px; font-size: 94%"> | |
| This is an unofficial demo for ControlNet, which is a neural network structure to control diffusion models by adding extra conditions such as canny edge detection. The demo is based on the <a href="https://github.com/lllyasviel/ControlNet" style="text-decoration: underline;" target="_blank"> Github </a> implementation. | |
| </p> | |
| ''') | |
| gr.HTML("<p>You can duplicate this Space to run it privately without a queue and load additional checkpoints. : <a style='display:inline-block' href='https://huggingface.co/spaces/RamAnanth1/ControlNet?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a> </p>") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(source='upload', type="numpy") | |
| input_control = gr.Dropdown(control_task_list, value="Scribble", label="Control Task") | |
| prompt = gr.Textbox(label="Prompt") | |
| run_button = gr.Button(label="Run") | |
| with gr.Accordion("Advanced options", open=False): | |
| num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
| image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256) | |
| low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1) | |
| high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1) | |
| ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) | |
| scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True) | |
| eta = gr.Slider(label="eta (DDIM)", minimum=0.0,maximum =1.0, value=0.0, step=0.1) | |
| a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') | |
| n_prompt = gr.Textbox(label="Negative Prompt", | |
| value='longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality') | |
| with gr.Column(): | |
| result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') | |
| ips = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold] | |
| run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) | |
| examples_list = [ | |
| [ | |
| "bird.png", | |
| "bird", | |
| "Canny Edge Map" | |
| ], | |
| # [ | |
| # "turtle.png", | |
| # "turtle", | |
| # "Scribble", | |
| # "best quality, extremely detailed", | |
| # 'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality', | |
| # 1, | |
| # 512, | |
| # 20, | |
| # 9.0, | |
| # 123490213, | |
| # 0.0, | |
| # 100, | |
| # 200 | |
| # ], | |
| # [ | |
| # "pose1.png", | |
| # "Chef in the Kitchen", | |
| # "Pose", | |
| # "best quality, extremely detailed", | |
| # 'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality', | |
| # 1, | |
| # 512, | |
| # 20, | |
| # 9.0, | |
| # 123490213, | |
| # 0.0, | |
| # 100, | |
| # 200 | |
| # ] | |
| ] | |
| examples = gr.Examples(examples=examples_list,inputs = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold], outputs = [result_gallery], cache_examples = True, fn = process) | |
| gr.Markdown("") | |
| block.launch(debug = True) |