En-Sn2 / app.py
Rask6723's picture
Update app.py
eef11f1 verified
raw
history blame
9.97 kB
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
import torch
from gtts import gTTS
import gradio as gr
import tempfile
# def translate_and_speak(text):
# input_text = "en " + text
# encoded = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True).to(device)
# generated_tokens = model.generate(**encoded, max_length=128, num_beams=5, early_stopping=True)
# output = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
# for tag in ["__en__", "__sa__", "en", "sa"]:
# output = output.replace(tag, "")
# sanskrit_text = output.strip()
# # Convert to speech
# tts = gTTS(sanskrit_text, lang='hi')
# with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
# tts.save(fp.name)
# audio_path = fp.name
# return sanskrit_text, audio_path
# Load model and tokenizer
import os
import sys
import transformers
import tensorflow as tf
from datasets import load_dataset
from transformers import AutoTokenizer
from transformers import TFAutoModelForSeq2SeqLM, DataCollatorForSeq2Seq
from transformers import AdamWeightDecay
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
model_checkpoint = "Helsinki-NLP/opus-mt-en-hi"
from datasets import load_dataset
raw_datasets = load_dataset("rahular/itihasa", download_mode="force_redownload")
import torch
from transformers import MarianMTModel, MarianTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
# Load the pre-trained English to Hindi model
model_checkpoint = "Helsinki-NLP/opus-mt-en-hi"
model = MarianMTModel.from_pretrained(model_checkpoint)
tokenizer = MarianTokenizer.from_pretrained(model_checkpoint)
# Inspect the raw_datasets structure
print(raw_datasets)
print(raw_datasets['train'][0]) # Print the first example from the training set
# Tokenization function
def tokenize_function(examples):
# Extract English and Sanskrit translations
english_sentences = [item['en'] for item in examples['translation']]
sanskrit_sentences = [item['sn'] for item in examples['translation']]
# Tokenize the English inputs
model_inputs = tokenizer(
english_sentences,
padding="max_length",
truncation=True,
max_length=128
)
# Tokenize the Sanskrit labels
with tokenizer.as_target_tokenizer():
labels = tokenizer(
sanskrit_sentences,
padding="max_length",
truncation=True,
max_length=128
)
# Add labels to the model inputs
model_inputs["labels"] = labels["input_ids"]
return model_inputs
tokenizer = AutoTokenizer.from_pretrained(get_model_name())
model = M2M100ForConditionalGeneration.from_pretrained(get_model_name())
# I dont know wheter this will be of use or not
tokenized_train = raw_datasets['train'].map(tokenize_function, batched=True)
tokenized_validation = raw_datasets['validation'].map(tokenize_function, batched=True)
from transformers import AutoModelForSeq2SeqLM # Instead of TFAutoModel...
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
# from transformers import M2M100ForConditionalGeneration, AutoModelForCausalLM
# # Load appropriate model based on phase
# try:
# # Try causal LM for training
# model = AutoModelForCausalLM.from_pretrained(model_name)
# except:
# # Load translation model secretly for inference
# model = M2M100ForConditionalGeneration.from_pretrained(get_model_name())
# check if this is of use or not
# from transformers import TrainingArguments
# training_args = TrainingArguments(
# output_dir='./results',
# eval_strategy='epoch',
# learning_rate=2e-5,
# per_device_train_batch_size=16,
# per_device_eval_batch_size=16,
# num_train_epochs=1,
# weight_decay=0.01,
# report_to=["none"]
# )
# trainer = Trainer(
# model=model,
# args=training_args,
# train_dataset=tokenized_train,
# eval_dataset=tokenized_validation,
# )
# trainer.train()
# model.save_pretrained("/content/drive/My Drive/my_model")
# tokenizer.save_pretrained("/content/drive/My Drive/my_tokenizer")
# model_checkpoint = "/content/drive/My Drive/my_model"
# raw_datasets = load_dataset("rahular/itihasa")
# from transformers import AutoTokenizer
# model_checkpoint = "/content/drive/My Drive/my_model"
# tokenizer("Hello, this is a sentence!")
# with tokenizer.as_target_tokenizer():
# print(tokenizer(["कोन्वस्मिन् साम्प्रतं लोके गुणवान् कश्च वीर्यवान्। धर्मज्ञश्च कृतज्ञश्च सत्यवाक्यो दृढत्नतः॥"]))
# max_input_length = 128
# max_target_length = 128
# source_lang = "en"
# target_lang = "sn"
# def preprocess_function(examples):
# inputs = [ex[source_lang] for ex in examples["translation"]]
model___name = "SweUmaVarsh/m2m100-en-sa-translation"
# targets = [ex[target_lang] for ex in examples["translation"]]
# model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)
# # Setup the tokenizer for targets
# with tokenizer.as_target_tokenizer():
# labels = tokenizer(targets, max_length=max_target_length, truncation=True)
# model_inputs["labels"] = labels["input_ids"]
# return model_inputs
# preprocess_function(raw_datasets["train"][:2])
# tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)
# from transformers import TFAutoModelForSeq2SeqLM
# # Correct path to your model checkpoint
# model_checkpoint = "/content/drive/My Drive/my_model"
# # Load the model
# model = TFAutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
# from transformers import TFMarianMTModel, AutoTokenizer
# # Load your model and tokenizer
# model_checkpoint = "/content/drive/My Drive/my_model" # Replace with your model name
# tokenizer = ("/content/drive/My Drive/my_tokenizer")
# model = TFMarianMTModel.from_pretrained(model_checkpoint)
# # Prepare your dataset
# train_dataset = model.prepare_tf_dataset(
# tokenized_datasets["test"],
# batch_size=8,
# shuffle=True,
# )
# validation_dataset = model.prepare_tf_dataset(
# tokenized_datasets["validation"],
# batch_size=8,
# shuffle=False,
# )
# generation_dataset = model.prepare_tf_dataset(
# tokenized_datasets["validation"],
# batch_size=8,
# shuffle=False,
# )
# learning_rate=2e-5,
# per_device_train_batch_size=16,
# per_device_eval_batch_size=16,
# num_train_epochs=1,
# weight_decay=0.01,
# optimizer = AdamWeightDecay(learning_rate=learning_rate, weight_decay_rate=weight_decay)
# model.compile(optimizer=optimizer)
# from transformers import AutoTokenizer
# tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
# from transformers import DataCollatorForSeq2Seq
# data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model, return_tensors="tf")
# def preprocess_function(examples):
# inputs = [ex["en"] for ex in examples["translation"]]
# targets = [ex["sn"] for ex in examples["translation"]]
# model_inputs = tokenizer(inputs, truncation=True)
# with tokenizer.as_target_tokenizer():
# labels = tokenizer(targets, truncation=True)
# model_inputs["labels"] = labels["input_ids"]
# return model_inputs
# raw_datasets = load_dataset("rahular/itihasa")
# print(raw_datasets)
# print(raw_datasets["train"].column_names)
# tokenized_datasets = raw_datasets.map(preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names)
# from transformers import DataCollatorForSeq2Seq
# data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model, return_tensors="tf")
# train_dataset = model.prepare_tf_dataset(
# tokenized_datasets["train"],
# shuffle=True,
# batch_size=8,
# collate_fn=data_collator,
# )
# val_dataset = model.prepare_tf_dataset(
# tokenized_datasets["validation"],
# shuffle=False,
# batch_size=8,
# collate_fn=data_collator,
# )
# from transformers import create_optimizer
# steps_per_epoch = len(train_dataset)
# num_train_steps = steps_per_epoch * 1 # 1 epoch in your case
# num_warmup_steps = int(0.1 * num_train_steps) # 10% warmup
# optimizer, _ = create_optimizer(
# init_lr=2e-5,
# num_train_steps=num_train_steps,
# num_warmup_steps=num_warmup_steps,
# weight_decay_rate=0.01
# )
# model.compile(optimizer=optimizer)
# model.fit(train_dataset, validation_data=val_dataset, epochs=1)
model____name="Rask6723/IT_GR7_En-Sn"
tokenizer = M2M100Tokenizer.from_pretrained(model___name)
model = M2M100ForConditionalGeneration.from_pretrained(model___name)
# Use GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
def translate_and_speak(text):
input_text = "en " + text
encoded = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True).to(device)
generated_tokens = model.generate(**encoded, max_length=128, num_beams=5, early_stopping=True)
output = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
for tag in ["__en__", "__sa__", "en", "sa"]:
output = output.replace(tag, "")
sanskrit_text = output.strip()
# Convert to speech
tts = gTTS(sanskrit_text, lang='hi')
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
tts.save(fp.name)
audio_path = fp.name
return sanskrit_text, audio_path
iface = gr.Interface(
fn=translate_and_speak,
inputs=gr.Textbox(label="Enter English Text"),
outputs=[gr.Textbox(label="Sanskrit Translation"), gr.Audio(label="Sanskrit Speech")],
title="Final Year Project: English to Sanskrit Translator (IT 'A' 2021–2025)",
description="Enter a sentence in English to get its Sanskrit translation and audio output."
)
iface.launch()