Spaces:
Runtime error
Runtime error
| import torch | |
| from typing import List, Union, Dict, Any, Callable, Optional, Tuple | |
| from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel | |
| from diffusers.utils.torch_utils import randn_tensor, is_compiled_module | |
| from diffusers.models import ControlNetModel | |
| from diffusers.pipelines.controlnet import MultiControlNetModel | |
| from diffusers.image_processor import PipelineImageInput | |
| from diffusers.pipelines.stable_diffusion.pipeline_output import ( | |
| StableDiffusionPipelineOutput, | |
| ) | |
| class ControlNetOutpaintPipeline(StableDiffusionControlNetInpaintPipeline): | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| image: PipelineImageInput = None, | |
| mask_image: PipelineImageInput = None, | |
| control_image: PipelineImageInput = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| strength: float = 1.0, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| controlnet_conditioning_scale: Union[float, List[float]] = 0.5, | |
| guess_mode: bool = False, | |
| control_guidance_start: Union[float, List[float]] = 0.0, | |
| control_guidance_end: Union[float, List[float]] = 1.0, | |
| clip_skip: Optional[int] = None, | |
| ## add | |
| repeat_time: int = 4, | |
| ## | |
| **kwargs: Any, | |
| ): | |
| r""" """ | |
| controlnet = ( | |
| self.controlnet._orig_mod | |
| if is_compiled_module(self.controlnet) | |
| else self.controlnet | |
| ) | |
| # self.init_filter() | |
| # align format for control guidance | |
| if not isinstance(control_guidance_start, list) and isinstance( | |
| control_guidance_end, list | |
| ): | |
| control_guidance_start = len(control_guidance_end) * [ | |
| control_guidance_start | |
| ] | |
| elif not isinstance(control_guidance_end, list) and isinstance( | |
| control_guidance_start, list | |
| ): | |
| control_guidance_end = len(control_guidance_start) * [control_guidance_end] | |
| elif not isinstance(control_guidance_start, list) and not isinstance( | |
| control_guidance_end, list | |
| ): | |
| mult = ( | |
| len(controlnet.nets) | |
| if isinstance(controlnet, MultiControlNetModel) | |
| else 1 | |
| ) | |
| control_guidance_start, control_guidance_end = mult * [ | |
| control_guidance_start | |
| ], mult * [control_guidance_end] | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| control_image, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| controlnet_conditioning_scale, | |
| control_guidance_start, | |
| control_guidance_end, | |
| ) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| if isinstance(controlnet, MultiControlNetModel) and isinstance( | |
| controlnet_conditioning_scale, float | |
| ): | |
| controlnet_conditioning_scale = [controlnet_conditioning_scale] * len( | |
| controlnet.nets | |
| ) | |
| global_pool_conditions = ( | |
| controlnet.config.global_pool_conditions | |
| if isinstance(controlnet, ControlNetModel) | |
| else controlnet.nets[0].config.global_pool_conditions | |
| ) | |
| guess_mode = guess_mode or global_pool_conditions | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| cross_attention_kwargs.get("scale", None) | |
| if cross_attention_kwargs is not None | |
| else None | |
| ) | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| clip_skip=clip_skip, | |
| ) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| if do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| # 4. Prepare image | |
| if isinstance(controlnet, ControlNetModel): | |
| control_image = self.prepare_control_image( | |
| image=control_image, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| guess_mode=guess_mode, | |
| ) | |
| elif isinstance(controlnet, MultiControlNetModel): | |
| control_images = [] | |
| for control_image_ in control_image: | |
| control_image_ = self.prepare_control_image( | |
| image=control_image_, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| guess_mode=guess_mode, | |
| ) | |
| control_images.append(control_image_) | |
| control_image = control_images | |
| else: | |
| assert False | |
| # 4. Preprocess mask and image - resizes image and mask w.r.t height and width | |
| init_image = self.image_processor.preprocess(image, height=height, width=width) | |
| init_image = init_image.to(dtype=torch.float32) | |
| mask = self.mask_processor.preprocess(mask_image, height=height, width=width) | |
| masked_image = init_image * (mask < 0.5) | |
| _, _, height, width = init_image.shape | |
| # 5. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps, num_inference_steps = self.get_timesteps( | |
| num_inference_steps=num_inference_steps, strength=strength, device=device | |
| ) | |
| # at which timestep to set the initial noise (n.b. 50% if strength is 0.5) | |
| latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
| # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise | |
| is_strength_max = strength == 1.0 | |
| # 6. Prepare latent variables | |
| num_channels_latents = self.vae.config.latent_channels | |
| num_channels_unet = self.unet.config.in_channels | |
| return_image_latents = True | |
| latents_outputs = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| image=init_image, | |
| timestep=latent_timestep, | |
| is_strength_max=is_strength_max, | |
| return_noise=True, | |
| return_image_latents=return_image_latents, | |
| ) | |
| if return_image_latents: | |
| latents, noise, image_latents = latents_outputs | |
| else: | |
| latents, noise = latents_outputs | |
| # 7. Prepare mask latent variables | |
| mask, masked_image_latents = self.prepare_mask_latents( | |
| mask, | |
| masked_image, | |
| batch_size * num_images_per_prompt, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| do_classifier_free_guidance, | |
| ) | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7.1 Create tensor stating which controlnets to keep | |
| controlnet_keep = [] | |
| for i in range(len(timesteps)): | |
| keeps = [ | |
| 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) | |
| for s, e in zip(control_guidance_start, control_guidance_end) | |
| ] | |
| controlnet_keep.append( | |
| keeps[0] if isinstance(controlnet, ControlNetModel) else keeps | |
| ) | |
| # 8. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| # for i, t in enumerate(timesteps): | |
| ## modify | |
| i = 0 | |
| reinject = repeat_time | |
| while i < len(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| t = timesteps[i] | |
| latent_model_input = ( | |
| torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| ) | |
| latent_model_input = self.scheduler.scale_model_input( | |
| latent_model_input, t | |
| ) | |
| # controlnet(s) inference | |
| if guess_mode and do_classifier_free_guidance: | |
| # Infer ControlNet only for the conditional batch. | |
| control_model_input = latents | |
| control_model_input = self.scheduler.scale_model_input( | |
| control_model_input, t | |
| ) | |
| controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] | |
| else: | |
| control_model_input = latent_model_input | |
| controlnet_prompt_embeds = prompt_embeds | |
| if isinstance(controlnet_keep[i], list): | |
| cond_scale = [ | |
| c * s | |
| for c, s in zip( | |
| controlnet_conditioning_scale, controlnet_keep[i] | |
| ) | |
| ] | |
| else: | |
| controlnet_cond_scale = controlnet_conditioning_scale | |
| if isinstance(controlnet_cond_scale, list): | |
| controlnet_cond_scale = controlnet_cond_scale[0] | |
| cond_scale = controlnet_cond_scale * controlnet_keep[i] | |
| down_block_res_samples, mid_block_res_sample = self.controlnet( | |
| control_model_input, | |
| t, | |
| encoder_hidden_states=controlnet_prompt_embeds, | |
| controlnet_cond=control_image, | |
| conditioning_scale=cond_scale, | |
| guess_mode=guess_mode, | |
| return_dict=False, | |
| ) | |
| if guess_mode and do_classifier_free_guidance: | |
| # Infered ControlNet only for the conditional batch. | |
| # To apply the output of ControlNet to both the unconditional and conditional batches, | |
| # add 0 to the unconditional batch to keep it unchanged. | |
| down_block_res_samples = [ | |
| torch.cat([torch.zeros_like(d), d]) | |
| for d in down_block_res_samples | |
| ] | |
| mid_block_res_sample = torch.cat( | |
| [ | |
| torch.zeros_like(mid_block_res_sample), | |
| mid_block_res_sample, | |
| ] | |
| ) | |
| # predict the noise residual | |
| if num_channels_unet == 9: | |
| latent_model_input = torch.cat( | |
| [latent_model_input, mask, masked_image_latents], dim=1 | |
| ) | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| down_block_additional_residuals=down_block_res_samples, | |
| mid_block_additional_residual=mid_block_res_sample, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents, **extra_step_kwargs, return_dict=False | |
| )[0] | |
| if num_channels_unet == 4: | |
| init_latents_proper = image_latents | |
| if do_classifier_free_guidance: | |
| init_mask, _ = mask.chunk(2) | |
| else: | |
| init_mask = mask | |
| if i < len(timesteps) - 1: | |
| noise_timestep = timesteps[i + 1] | |
| init_latents_proper = self.scheduler.add_noise( | |
| init_latents_proper, | |
| noise, | |
| torch.tensor([noise_timestep]), | |
| ) | |
| latents = ( | |
| 1 - init_mask | |
| ) * init_latents_proper + init_mask * latents | |
| i += 1 | |
| ## noise reinjection | |
| if i > 0 and i < int(len(timesteps) - 1) and reinject > 0: | |
| current_timestep = timesteps[i] | |
| target_timestep = timesteps[i - 1] | |
| new_nosie = torch.randn_like(latents) | |
| # step back x_t-1 -> x_t | |
| latents = self.scheduler.step_back( | |
| latents, | |
| new_nosie, | |
| torch.tensor([current_timestep]), | |
| torch.tensor([target_timestep]), | |
| ) | |
| i -= 1 | |
| reinject -= 1 | |
| else: | |
| # reinject = repeat_time | |
| # schedule | |
| if i >= int(len(timesteps) * 0.8): | |
| reinject = 0 | |
| elif i >= int(len(timesteps) * 0.6): | |
| reinject = max(0, repeat_time - 3) | |
| elif i >= int(len(timesteps) * 0.4): | |
| reinject = max(0, repeat_time - 2) | |
| elif i >= int(len(timesteps) * 0.2): | |
| reinject = max(0, repeat_time - 1) | |
| else: | |
| reinject = repeat_time | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ( | |
| (i + 1) > num_warmup_steps | |
| and (i + 1) % self.scheduler.order == 0 | |
| ): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| # If we do sequential model offloading, let's offload unet and controlnet | |
| # manually for max memory savings | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.unet.to("cpu") | |
| self.controlnet.to("cpu") | |
| torch.cuda.empty_cache() | |
| if not output_type == "latent": | |
| image = self.vae.decode( | |
| latents / self.vae.config.scaling_factor, | |
| return_dict=False, | |
| generator=generator, | |
| )[0] | |
| image, has_nsfw_concept = self.run_safety_checker( | |
| image, device, prompt_embeds.dtype | |
| ) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess( | |
| image, output_type=output_type, do_denormalize=do_denormalize | |
| ) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput( | |
| images=image, nsfw_content_detected=has_nsfw_concept | |
| ) | |