Spaces:
Sleeping
Sleeping
File size: 8,326 Bytes
827241b 2b9fb76 827241b 2b9fb76 827241b 2b9fb76 827241b 2b9fb76 827241b e91b5a9 827241b 2b9fb76 827241b 2b9fb76 827241b 2b9fb76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import gradio as gr
from gradio_webrtc import WebRTC
import os
import pickle
import numpy as np
import cv2
import tensorflow as tf
from sklearn.preprocessing import OneHotEncoder
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras import Model
from tensorflow.image import resize
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from keras_vggface.vggface import VGGFace
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import RandomFlip, RandomRotation, RandomBrightness, RandomContrast, RandomTranslation, Input, Dense, Flatten
from sklearn.model_selection import train_test_split
class ResNetModel():
def __init__(self):
self.data_augmentation = Sequential([
RandomBrightness(factor=0.2),
RandomContrast(factor=0.2),
RandomFlip("horizontal"),
RandomTranslation(height_factor=0.1, width_factor=0.1),
RandomRotation(factor=0.1)
])
def load_data(self, data_path: str, input_size:tuple = (224, 224)):
image_list = []
class_list = []
self.input_size = input_size
faceCascade = cv2.CascadeClassifier('Cascades/haarcascade_frontalface_default.xml')
for label in os.listdir(data_path):
if len(os.listdir(os.path.join(data_path, label))) < 5:
continue
for j, filename in enumerate(os.listdir(os.path.join(data_path, label))):
if j >= 10:
break
filename = os.path.join(data_path, label, filename)
print(f"Index {j}. {filename}")
image = load_img(filename)
# image = load_img(filename, color_mode = color_mode)
# if color_mode != "grayscale":
# gray = np.array(rgb_to_grayscale(image))
# else:
# gray = np.array(image.copy())
image = np.array(image)
faces = faceCascade.detectMultiScale(
image,
scaleFactor=1.2,
minNeighbors=5,
minSize=(20, 20)
)
for (x,y,w,h) in faces:
if w == 0 or h == 0:
continue
image_roi = image[y:y+h, x:x+w]
image_roi = img_to_array(image_roi)
image_roi = resize(image_roi, input_size)
image_list.append(image_roi)
class_list.append(label)
os.system("cls")
encoder = OneHotEncoder(sparse_output=False)
class_list = encoder.fit_transform(np.array(class_list).reshape(-1, 1))
image_list = np.asarray(image_list)
self.label_names = encoder.categories_[0]
X_train, X_temp, y_train, y_temp = train_test_split(image_list, class_list, test_size=0.3)
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5)
self.X_train = X_train
self.y_train = y_train
self.X_val = X_val
self.y_val = y_val
self.X_test = X_test
self.y_test = y_test
print(f"Train dataset len: {X_train.shape[0]}")
print(f"Val dataset len: {X_val.shape[0]}")
print(f"Test dataset len: {X_test.shape[0]}")
print(f"Sample image shape: {X_train[0].shape}")
def save(self, save_path):
self.X_train = []
self.y_train = []
self.X_val = []
self.y_val = []
self.X_test = []
self.y_test = []
model_save_path = save_path + "_model.h5"
self.model.save(model_save_path)
# Save the rest of the class attributes
with open(save_path + "_attributes.pickle", "wb") as file:
pickle.dump({
"data_augmentation": self.data_augmentation,
"label_names": self.label_names,
"input_size": self.input_size,
}, file)
@classmethod
def load(cls, save_path):
with open(save_path + "_attributes.pickle", "rb") as file:
attributes = pickle.load(file)
instance = cls()
instance.data_augmentation = attributes["data_augmentation"]
instance.label_names = attributes["label_names"]
instance.input_size = attributes["input_size"]
# Load the Keras model
model_save_path = save_path + "_model.h5"
instance.model = tf.keras.models.load_model(model_save_path)
print(f"Model and attributes loaded from {save_path}")
return instance
def fit(self, model_name: str, augmentation=True, save_path=None, batch_size=64, epochs=10):
inputs = Input(shape=self.X_train[0].shape)
layer = self.data_augmentation(inputs) if augmentation else inputs
base_model = VGGFace(model=model_name, include_top=False, input_shape=self.X_train[0].shape, pooling="avg")
base_model.trainable = False
layer = base_model(layer)
layer = Flatten(name="Flatten")(layer)
out = Dense(len(self.label_names), activation="softmax")(layer)
model = Model(inputs, out)
model.compile(optimizer="adam", metrics=["accuracy"], loss="categorical_crossentropy")
print(model.summary())
self.history = model.fit(
self.X_train, self.y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(self.X_val, self.y_val),
callbacks=[EarlyStopping(monitor="val_loss", patience=3)]
)
self.model = model
if save_path is not None:
self.save(save_path)
loss, accuracy = model.evaluate(self.X_test, self.y_test)
print(f"Test accuracy:{(accuracy * 100):2f}")
print(f"Test loss:{loss:2f}")
return model
def predict(self, predict_image):
predict_image = img_to_array(predict_image)
predict_image = resize(predict_image, self.input_size)
predict_image = np.expand_dims(predict_image, axis=0)
predict_label = self.model.predict(predict_image)
return self.label_names[np.argmax(predict_label)], np.max(predict_label)
faceRecognition = ResNetModel.load("resnet_v2")
def predict(image):
faceCascade = cv2.CascadeClassifier('Cascades/haarcascade_frontalface_default.xml')
frame = np.array(image)
faces = faceCascade.detectMultiScale(
frame,
scaleFactor=1.2,
minNeighbors=5,
minSize=(20, 20)
)
for (x,y,w,h) in faces:
cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),3)
roi_color = frame[y:y+h, x:x+w]
roi_color = cv2.flip(roi_color, 1)
label, conf = faceRecognition.predict(roi_color)
label = label[:12] + "..." if len(label) > 10 else label
text = "{label} : {conf:.3f}".format(label = label, conf = conf)
cv2.putText(frame, text, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,0,0), 3)
return frame
css = """.my-column {max-width: 600px;}"""
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<h1 style='text-align: center'>
Face Recognition Using ResNet-50 LB01 - Kelompok 8
</h1>
<ul style='text-align: center'>
<h4> <li>2602082452 - Rendy Susanto </li> </h4>
<h4> <li>2602090031 - Rafael Juviano Joesoef </li> </h4>
<h4> <li>2602091122 - Owen Tamashi Buntoro </li> </h4>
</ul>
"""
)
with gr.Row():
with gr.Column(elem_classes=["my-column"]):
input_img = gr.Image(label="Input", sources="webcam")
with gr.Column(elem_classes=["my-column"]):
output_img = gr.Image(label="Output")
input_img.stream(
fn=predict, inputs=[input_img], outputs=[output_img], time_limit=1, stream_every=0.1
)
if __name__ == "__main__":
demo.launch()
|