FaceRecognition / app.py
Rend19's picture
Upload app.py
e91b5a9 verified
import gradio as gr
from gradio_webrtc import WebRTC
import os
import pickle
import numpy as np
import cv2
import tensorflow as tf
from sklearn.preprocessing import OneHotEncoder
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras import Model
from tensorflow.image import resize
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from keras_vggface.vggface import VGGFace
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import RandomFlip, RandomRotation, RandomBrightness, RandomContrast, RandomTranslation, Input, Dense, Flatten
from sklearn.model_selection import train_test_split
class ResNetModel():
def __init__(self):
self.data_augmentation = Sequential([
RandomBrightness(factor=0.2),
RandomContrast(factor=0.2),
RandomFlip("horizontal"),
RandomTranslation(height_factor=0.1, width_factor=0.1),
RandomRotation(factor=0.1)
])
def load_data(self, data_path: str, input_size:tuple = (224, 224)):
image_list = []
class_list = []
self.input_size = input_size
faceCascade = cv2.CascadeClassifier('Cascades/haarcascade_frontalface_default.xml')
for label in os.listdir(data_path):
if len(os.listdir(os.path.join(data_path, label))) < 5:
continue
for j, filename in enumerate(os.listdir(os.path.join(data_path, label))):
if j >= 10:
break
filename = os.path.join(data_path, label, filename)
print(f"Index {j}. {filename}")
image = load_img(filename)
# image = load_img(filename, color_mode = color_mode)
# if color_mode != "grayscale":
# gray = np.array(rgb_to_grayscale(image))
# else:
# gray = np.array(image.copy())
image = np.array(image)
faces = faceCascade.detectMultiScale(
image,
scaleFactor=1.2,
minNeighbors=5,
minSize=(20, 20)
)
for (x,y,w,h) in faces:
if w == 0 or h == 0:
continue
image_roi = image[y:y+h, x:x+w]
image_roi = img_to_array(image_roi)
image_roi = resize(image_roi, input_size)
image_list.append(image_roi)
class_list.append(label)
os.system("cls")
encoder = OneHotEncoder(sparse_output=False)
class_list = encoder.fit_transform(np.array(class_list).reshape(-1, 1))
image_list = np.asarray(image_list)
self.label_names = encoder.categories_[0]
X_train, X_temp, y_train, y_temp = train_test_split(image_list, class_list, test_size=0.3)
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5)
self.X_train = X_train
self.y_train = y_train
self.X_val = X_val
self.y_val = y_val
self.X_test = X_test
self.y_test = y_test
print(f"Train dataset len: {X_train.shape[0]}")
print(f"Val dataset len: {X_val.shape[0]}")
print(f"Test dataset len: {X_test.shape[0]}")
print(f"Sample image shape: {X_train[0].shape}")
def save(self, save_path):
self.X_train = []
self.y_train = []
self.X_val = []
self.y_val = []
self.X_test = []
self.y_test = []
model_save_path = save_path + "_model.h5"
self.model.save(model_save_path)
# Save the rest of the class attributes
with open(save_path + "_attributes.pickle", "wb") as file:
pickle.dump({
"data_augmentation": self.data_augmentation,
"label_names": self.label_names,
"input_size": self.input_size,
}, file)
@classmethod
def load(cls, save_path):
with open(save_path + "_attributes.pickle", "rb") as file:
attributes = pickle.load(file)
instance = cls()
instance.data_augmentation = attributes["data_augmentation"]
instance.label_names = attributes["label_names"]
instance.input_size = attributes["input_size"]
# Load the Keras model
model_save_path = save_path + "_model.h5"
instance.model = tf.keras.models.load_model(model_save_path)
print(f"Model and attributes loaded from {save_path}")
return instance
def fit(self, model_name: str, augmentation=True, save_path=None, batch_size=64, epochs=10):
inputs = Input(shape=self.X_train[0].shape)
layer = self.data_augmentation(inputs) if augmentation else inputs
base_model = VGGFace(model=model_name, include_top=False, input_shape=self.X_train[0].shape, pooling="avg")
base_model.trainable = False
layer = base_model(layer)
layer = Flatten(name="Flatten")(layer)
out = Dense(len(self.label_names), activation="softmax")(layer)
model = Model(inputs, out)
model.compile(optimizer="adam", metrics=["accuracy"], loss="categorical_crossentropy")
print(model.summary())
self.history = model.fit(
self.X_train, self.y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(self.X_val, self.y_val),
callbacks=[EarlyStopping(monitor="val_loss", patience=3)]
)
self.model = model
if save_path is not None:
self.save(save_path)
loss, accuracy = model.evaluate(self.X_test, self.y_test)
print(f"Test accuracy:{(accuracy * 100):2f}")
print(f"Test loss:{loss:2f}")
return model
def predict(self, predict_image):
predict_image = img_to_array(predict_image)
predict_image = resize(predict_image, self.input_size)
predict_image = np.expand_dims(predict_image, axis=0)
predict_label = self.model.predict(predict_image)
return self.label_names[np.argmax(predict_label)], np.max(predict_label)
faceRecognition = ResNetModel.load("resnet_v2")
def predict(image):
faceCascade = cv2.CascadeClassifier('Cascades/haarcascade_frontalface_default.xml')
frame = np.array(image)
faces = faceCascade.detectMultiScale(
frame,
scaleFactor=1.2,
minNeighbors=5,
minSize=(20, 20)
)
for (x,y,w,h) in faces:
cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),3)
roi_color = frame[y:y+h, x:x+w]
roi_color = cv2.flip(roi_color, 1)
label, conf = faceRecognition.predict(roi_color)
label = label[:12] + "..." if len(label) > 10 else label
text = "{label} : {conf:.3f}".format(label = label, conf = conf)
cv2.putText(frame, text, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,0,0), 3)
return frame
css = """.my-column {max-width: 600px;}"""
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<h1 style='text-align: center'>
Face Recognition Using ResNet-50 LB01 - Kelompok 8
</h1>
<ul style='text-align: center'>
<h4> <li>2602082452 - Rendy Susanto </li> </h4>
<h4> <li>2602090031 - Rafael Juviano Joesoef </li> </h4>
<h4> <li>2602091122 - Owen Tamashi Buntoro </li> </h4>
</ul>
"""
)
with gr.Row():
with gr.Column(elem_classes=["my-column"]):
input_img = gr.Image(label="Input", sources="webcam")
with gr.Column(elem_classes=["my-column"]):
output_img = gr.Image(label="Output")
input_img.stream(
fn=predict, inputs=[input_img], outputs=[output_img], time_limit=1, stream_every=0.1
)
if __name__ == "__main__":
demo.launch()