File size: 12,985 Bytes
0bf918d 79c68cb 8961ae5 0bf918d 8961ae5 0bf918d 8961ae5 79c68cb 8961ae5 79c68cb 8961ae5 0bf918d 79c68cb 8961ae5 79c68cb 8961ae5 79c68cb 0bf918d 8961ae5 0bf918d 8961ae5 a853b3c 8961ae5 a853b3c 79c68cb a853b3c 79c68cb 8961ae5 0bf918d 8961ae5 79c68cb b470363 8961ae5 79c68cb 8961ae5 b3baad6 79c68cb a853b3c 8961ae5 79c68cb b470363 3b83048 79c68cb a853b3c b3baad6 79c68cb a853b3c 79c68cb bf478e8 79c68cb a853b3c b3baad6 bf478e8 79c68cb a853b3c bf478e8 79c68cb a853b3c bf478e8 79c68cb a853b3c bf478e8 79c68cb a853b3c 8961ae5 bf478e8 79c68cb bf478e8 8961ae5 a853b3c 8961ae5 a853b3c 8961ae5 a853b3c 8961ae5 79c68cb 8961ae5 a853b3c 79c68cb 8961ae5 79c68cb 8961ae5 0bf918d 8961ae5 0bf918d 8961ae5 79c68cb b470363 8961ae5 79c68cb b470363 79c68cb b470363 8961ae5 79c68cb a853b3c 8961ae5 a853b3c 8961ae5 3b8ef04 8961ae5 79c68cb 8961ae5 a853b3c 8961ae5 0bf918d 8961ae5 0bf918d 79c68cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
# ml_engine/patterns.py
# (V8.8 - الحل النهائي: إعادة فحوصات السلامة (Column Checks) لجميع المؤشرات)
import pandas as pd
import numpy as np
import joblib
import asyncio
import io
# (يجب التأكد من أن pandas-ta مثبت في بيئة Hugging Face)
try:
import pandas_ta as ta
except ImportError:
print("❌❌ [PatternEngineV8] مكتبة pandas_ta غير موجودة! هذا المحرك سيفشل.")
ta = None
class ChartPatternAnalyzer:
def __init__(self, r2_service=None,
model_key="lgbm_pattern_model_combined.pkl",
scaler_key="scaler_combined.pkl",
window_size=60):
"""
تهيئة المحرك بتحميل النماذج من R2.
"""
self.window_size = window_size
self.model = None
self.scaler = None
self.class_names = ["Bearish Pattern", "Neutral / No Pattern", "Bullish Pattern"]
self.r2_service = r2_service
self.model_key = model_key
self.scaler_key = scaler_key
# (الوصفة V8.7 - 35 عموداً رقمياً)
self.feature_names = [
'open', 'high', 'low', 'close', 'volume',
'RSI_14', 'MACD_12_26_9', 'MACDh_12_26_9', 'MACDs_12_26_9', 'SMA_20',
'EMA_20', 'BBL_5_2.0_2.0', 'BBM_5_2.0_2.0', 'BBU_5_2.0_2.0', 'BBB_5_2.0_2.0',
'BBP_5_2.0_2.0', 'STOCHk_14_3_3', 'STOCHd_14_3_3', 'STOCHh_14_3_3',
'ADX_14', 'ADXR_14_2', 'DMP_14', 'DMN_14', 'VWAP_D', 'MIDPOINT_14',
'TEMA_20', 'OBV', 'AD', 'ATRr_14', 'DPO_20', 'KVO_34_55_13',
'KVOs_34_55_13', 'CMO_14', 'ROC_10', 'WILLR_14'
]
if not self.r2_service:
print("⚠️ [PatternEngineV8] R2Service غير متوفر. يجب التحميل يدوياً.")
async def initialize(self):
"""
يجب استدعاؤها من app.py أو data_manager لتحميل النماذج.
"""
if self.model and self.scaler:
return True
if not self.r2_service:
print("❌ [PatternEngineV8] لا يمكن التهيئة بدون R2 Service.")
return False
try:
print(f" > [PatternEngineV8] تحميل {self.model_key} من R2...")
model_obj = self.r2_service.s3_client.get_object(Bucket=self.r2_service.BUCKET_NAME, Key=self.model_key)
model_bytes = io.BytesIO(model_obj['Body'].read())
self.model = joblib.load(model_bytes)
print(f" > [PatternEngineV8] تحميل {self.scaler_key} من R2...")
scaler_obj = self.r2_service.s3_client.get_object(Bucket=self.r2_service.BUCKET_NAME, Key=self.scaler_key)
scaler_bytes = io.BytesIO(scaler_obj['Body'].read())
self.scaler = joblib.load(scaler_bytes)
print("✅ [PatternEngineV8] تم تحميل النموذج (58%) والمقياس بنجاح.")
if hasattr(self.scaler, 'feature_names_in_'):
print(f" > يتوقع المقياس {len(self.scaler.feature_names_in_)} خاصية.")
if len(self.scaler.feature_names_in_) == len(self.feature_names):
print(" > ✅ (V8.8) عدد الخصائص (35) متطابق مع المقياس.")
else:
print(f" > ⚠️ (V8.8) تحذير: عدم تطابق الخصائص! الكود يتوقع {len(self.feature_names)}, المقياس يتوقع {len(self.scaler.feature_names_in_)}")
return True
except Exception as e:
print(f"❌❌ [PatternEngineV8] فشل فادح في تحميل النماذج من R2: {e}")
self.model = None
self.scaler = None
return False
# 🔴 --- START OF CHANGE (V8.8) --- 🔴
# (إعادة فحوصات السلامة (Column Checks) لجميع المؤشرات)
def _extract_features(self, df_ranged: pd.DataFrame, df_indexed: pd.DataFrame) -> pd.DataFrame:
"""
(الوصفة V8.8 - إرجاع 35 عموداً + فحوصات سلامة كاملة)
"""
if not ta:
raise ImportError("مكتبة pandas-ta غير مثبتة.")
# (1. البدء بآخر صف من البيانات الأساسية)
df_features = df_ranged.iloc[-1:].copy()
# (2. بيانات مفهرسة لـ VWAP)
h_idx = df_indexed['high']
l_idx = df_indexed['low']
c_idx = df_indexed['close']
v_idx = df_indexed['volume']
# (3. بيانات غير مفهرسة (السريعة) لباقي المؤشرات)
c = df_ranged['close']
h = df_ranged['high']
l = df_ranged['low']
v = df_ranged['volume']
try:
# --- حساب الـ 30 مؤشر (مع فحوصات السلامة) ---
# (المؤشرات التي تُرجع سلسلة Series - آمنة نسبياً)
df_features['RSI_14'] = ta.rsi(c, length=14).iloc[-1]
df_features['SMA_20'] = ta.sma(c, length=20).iloc[-1]
df_features['EMA_20'] = ta.ema(c, length=20).iloc[-1]
df_features['MIDPOINT_14'] = ta.midpoint(c, length=14).iloc[-1]
df_features['TEMA_20'] = ta.tema(c, length=20).iloc[-1]
df_features['OBV'] = ta.obv(c, v).iloc[-1]
df_features['AD'] = ta.ad(h, l, c, v).iloc[-1]
df_features['ATRr_14'] = ta.atr(h, l, c, percent=True, length=14).iloc[-1]
df_features['DPO_20'] = ta.dpo(c, length=20).iloc[-1]
df_features['CMO_14'] = ta.cmo(c, length=14).iloc[-1]
df_features['ROC_10'] = ta.roc(c, length=10).iloc[-1]
df_features['WILLR_14'] = ta.willr(h, l, c, length=14).iloc[-1]
# (الاستثناء: VWAP يستخدم بيانات مفهرسة)
vwap_series = ta.vwap(h_idx, l_idx, c_idx, v_idx)
if vwap_series is not None:
df_features['VWAP_D'] = vwap_series.iloc[-1]
# --- (المؤشرات التي تُرجع DataFrame - تحتاج فحص سلامة) ---
macd_data = ta.macd(c, fast=12, slow=26, signal=9)
if macd_data is not None and not macd_data.empty and 'MACD_12_26_9' in macd_data.columns:
df_features['MACD_12_26_9'] = macd_data['MACD_12_26_9'].iloc[-1]
df_features['MACDh_12_26_9'] = macd_data['MACDh_12_26_9'].iloc[-1]
df_features['MACDs_12_26_9'] = macd_data['MACDs_12_26_9'].iloc[-1]
bb_data = ta.bbands(c, length=5, std=2.0)
if bb_data is not None and not bb_data.empty and 'BBL_5_2.0' in bb_data.columns:
df_features['BBL_5_2.0_2.0'] = bb_data['BBL_5_2.0'].iloc[-1]
df_features['BBM_5_2.0_2.0'] = bb_data['BBM_5_2.0'].iloc[-1]
df_features['BBU_5_2.0_2.0'] = bb_data['BBU_5_2.0'].iloc[-1]
df_features['BBB_5_2.0_2.0'] = bb_data['BBB_5_2.0'].iloc[-1]
df_features['BBP_5_2.0_2.0'] = bb_data['BBP_5_2.0'].iloc[-1]
stoch_data = ta.stoch(h, l, c, k=14, d=3, smooth_k=3)
if stoch_data is not None and not stoch_data.empty and 'STOCHk_14_3_3' in stoch_data.columns:
df_features['STOCHk_14_3_3'] = stoch_data['STOCHk_14_3_3'].iloc[-1]
df_features['STOCHd_14_3_3'] = stoch_data['STOCHd_14_3_3'].iloc[-1]
df_features['STOCHh_14_3_3'] = stoch_data['STOCHh_14_3_3'].iloc[-1]
adx_data = ta.adx(h, l, c, length=14, adxr=2)
if adx_data is not None and not adx_data.empty and 'ADX_14' in adx_data.columns:
df_features['ADX_14'] = adx_data['ADX_14'].iloc[-1]
df_features['ADXR_14_2'] = adx_data['ADXR_14_2'].iloc[-1]
df_features['DMP_14'] = adx_data['DMP_14'].iloc[-1]
df_features['DMN_14'] = adx_data['DMN_14'].iloc[-1]
kvo_data = ta.kvo(h, l, c, v, fast=34, slow=55, signal=13)
if kvo_data is not None and not kvo_data.empty and 'KVO_34_55_13' in kvo_data.columns:
df_features['KVO_34_55_13'] = kvo_data['KVO_34_55_13'].iloc[-1]
df_features['KVOs_34_55_13'] = kvo_data['KVOs_34_55_13'].iloc[-1]
except Exception as e:
# (هذا الخطأ يجب ألا يظهر الآن إلا في حالات نادرة جداً)
print(f"❌ [PatternEngineV8.8] خطأ أثناء حساب المؤشرات وظيفياً: {e}")
pass
# --- (نهاية حساب المؤشرات) ---
# (ملء أي قيم مفقودة (NaN) بـ 0 قبل إرسالها للمقياس)
df_features.fillna(0, inplace=True)
# (التأكد من أننا نرسل فقط الـ 35 عموداً التي يتوقعها المقياس)
final_features_df = pd.DataFrame(columns=self.feature_names)
for col in self.feature_names:
if col in df_features:
final_features_df[col] = df_features[col].values
else:
final_features_df[col] = 0
return final_features_df
# 🔴 --- END OF CHANGE (V8.8) --- 🔴
async def detect_chart_patterns(self, ohlcv_data: dict) -> dict:
"""
(الدالة الرئيسية - لا تغيير هنا عن V8.7)
"""
best_match = {
'pattern_detected': 'no_clear_pattern',
'pattern_confidence': 0,
'predicted_direction': 'neutral',
'timeframe': None,
'details': {}
}
if not self.model or not self.scaler:
if not hasattr(self, '_init_warned'):
print("⚠️ [PatternEngineV8] النموذج/المقياس غير محمل. يجب استدعاء .initialize() أولاً.")
self._init_warned = True
return best_match
all_results = []
for timeframe, candles in ohlcv_data.items():
if len(candles) >= max(self.window_size, 200):
try:
window_candles = candles[-200:]
# (1. نسخة غير مفهرسة (RangeIndex 0,1,2...))
df_ranged = pd.DataFrame(window_candles, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
# (2. نسخة مفهرسة (DatetimeIndex))
df_indexed = df_ranged.copy()
df_indexed['timestamp'] = pd.to_datetime(df_indexed['timestamp'], unit='ms')
df_indexed.set_index('timestamp', inplace=True)
# (3. استخراج الخصائص (V8.8))
features_df = self._extract_features(df_ranged, df_indexed)
if features_df is None or features_df.empty:
continue
# (4. تطبيع الخصائص (Scaler))
features_scaled = self.scaler.transform(features_df)
# (5. التنبؤ بالاحتماليات (Probabilities))
probabilities = self.model.predict_proba(features_scaled)[0]
best_class_index = np.argmax(probabilities)
confidence = probabilities[best_class_index]
pattern_name = self.class_names[best_class_index]
if pattern_name != "Neutral / No Pattern" and confidence > 0.5:
all_results.append({
'pattern': pattern_name,
'confidence': float(confidence),
'timeframe': timeframe
})
except Exception as e:
print(f"❌ [PatternEngineV8.8] فشل التنبؤ لـ {timeframe}: {e}")
# (6. اختيار أفضل نمط)
if all_results:
best_result = max(all_results, key=lambda x: x['confidence'])
direction = 'neutral'
if "Bullish" in best_result['pattern']: direction = 'up'
elif "Bearish" in best_result['pattern']: direction = 'down'
best_match['pattern_detected'] = best_result['pattern']
best_match['pattern_confidence'] = best_result['confidence']
best_match['timeframe'] = best_result['timeframe']
best_match['predicted_direction'] = direction
best_match['details'] = {'ml_confidence': best_result['confidence']}
return best_match
print("✅ ML Module: Pattern Engine V8.8 (Robust DataFrame Checks) loaded") |