File size: 12,985 Bytes
0bf918d
79c68cb
8961ae5
0bf918d
 
8961ae5
 
 
 
 
 
 
 
 
 
0bf918d
 
 
8961ae5
 
 
79c68cb
8961ae5
 
 
 
 
 
79c68cb
8961ae5
 
 
0bf918d
79c68cb
8961ae5
79c68cb
8961ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79c68cb
0bf918d
8961ae5
 
 
0bf918d
 
8961ae5
 
 
 
 
 
 
 
 
 
 
a853b3c
8961ae5
 
a853b3c
79c68cb
a853b3c
79c68cb
8961ae5
 
 
0bf918d
8961ae5
 
 
 
 
79c68cb
 
b470363
8961ae5
79c68cb
8961ae5
 
 
b3baad6
79c68cb
a853b3c
8961ae5
79c68cb
b470363
 
 
 
3b83048
79c68cb
a853b3c
 
 
 
 
b3baad6
79c68cb
 
 
a853b3c
79c68cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf478e8
 
79c68cb
a853b3c
 
 
b3baad6
bf478e8
79c68cb
a853b3c
 
 
 
 
bf478e8
 
79c68cb
a853b3c
 
 
bf478e8
 
79c68cb
a853b3c
 
 
 
bf478e8
 
79c68cb
a853b3c
 
8961ae5
bf478e8
79c68cb
 
bf478e8
 
8961ae5
a853b3c
 
8961ae5
a853b3c
 
8961ae5
a853b3c
 
 
8961ae5
79c68cb
8961ae5
a853b3c
79c68cb
8961ae5
 
 
79c68cb
8961ae5
 
 
 
 
 
0bf918d
 
 
8961ae5
 
 
 
 
0bf918d
8961ae5
 
 
 
 
 
 
79c68cb
b470363
8961ae5
79c68cb
b470363
 
 
 
79c68cb
b470363
8961ae5
 
 
 
79c68cb
a853b3c
8961ae5
a853b3c
8961ae5
 
 
 
3b8ef04
8961ae5
 
 
 
 
 
 
 
 
79c68cb
8961ae5
a853b3c
8961ae5
 
0bf918d
8961ae5
 
 
 
 
 
 
 
 
 
 
0bf918d
79c68cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# ml_engine/patterns.py
# (V8.8 - الحل النهائي: إعادة فحوصات السلامة (Column Checks) لجميع المؤشرات)

import pandas as pd
import numpy as np
import joblib
import asyncio
import io

# (يجب التأكد من أن pandas-ta مثبت في بيئة Hugging Face)
try:
    import pandas_ta as ta
except ImportError:
    print("❌❌ [PatternEngineV8] مكتبة pandas_ta غير موجودة! هذا المحرك سيفشل.")
    ta = None

class ChartPatternAnalyzer:
    
    def __init__(self, r2_service=None, 
                 model_key="lgbm_pattern_model_combined.pkl", 
                 scaler_key="scaler_combined.pkl",
                 window_size=60):
        """
        تهيئة المحرك بتحميل النماذج من R2.
        """
        self.window_size = window_size
        self.model = None
        self.scaler = None
        self.class_names = ["Bearish Pattern", "Neutral / No Pattern", "Bullish Pattern"]
        self.r2_service = r2_service
        self.model_key = model_key
        self.scaler_key = scaler_key
        
        # (الوصفة V8.7 - 35 عموداً رقمياً)
        self.feature_names = [
            'open', 'high', 'low', 'close', 'volume', 
            'RSI_14', 'MACD_12_26_9', 'MACDh_12_26_9', 'MACDs_12_26_9', 'SMA_20', 
            'EMA_20', 'BBL_5_2.0_2.0', 'BBM_5_2.0_2.0', 'BBU_5_2.0_2.0', 'BBB_5_2.0_2.0', 
            'BBP_5_2.0_2.0', 'STOCHk_14_3_3', 'STOCHd_14_3_3', 'STOCHh_14_3_3', 
            'ADX_14', 'ADXR_14_2', 'DMP_14', 'DMN_14', 'VWAP_D', 'MIDPOINT_14', 
            'TEMA_20', 'OBV', 'AD', 'ATRr_14', 'DPO_20', 'KVO_34_55_13', 
            'KVOs_34_55_13', 'CMO_14', 'ROC_10', 'WILLR_14'
        ]

        if not self.r2_service:
            print("⚠️ [PatternEngineV8] R2Service غير متوفر. يجب التحميل يدوياً.")

    async def initialize(self):
        """
        يجب استدعاؤها من app.py أو data_manager لتحميل النماذج.
        """
        if self.model and self.scaler:
            return True 
            
        if not self.r2_service:
            print("❌ [PatternEngineV8] لا يمكن التهيئة بدون R2 Service.")
            return False
            
        try:
            print(f"   > [PatternEngineV8] تحميل {self.model_key} من R2...")
            model_obj = self.r2_service.s3_client.get_object(Bucket=self.r2_service.BUCKET_NAME, Key=self.model_key)
            model_bytes = io.BytesIO(model_obj['Body'].read())
            self.model = joblib.load(model_bytes)
            
            print(f"   > [PatternEngineV8] تحميل {self.scaler_key} من R2...")
            scaler_obj = self.r2_service.s3_client.get_object(Bucket=self.r2_service.BUCKET_NAME, Key=self.scaler_key)
            scaler_bytes = io.BytesIO(scaler_obj['Body'].read())
            self.scaler = joblib.load(scaler_bytes)

            print("✅ [PatternEngineV8] تم تحميل النموذج (58%) والمقياس بنجاح.")
            
            if hasattr(self.scaler, 'feature_names_in_'):
                 print(f"   > يتوقع المقياس {len(self.scaler.feature_names_in_)} خاصية.")
                 if len(self.scaler.feature_names_in_) == len(self.feature_names):
                     print("   > ✅ (V8.8) عدد الخصائص (35) متطابق مع المقياس.")
                 else:
                     print(f"   > ⚠️ (V8.8) تحذير: عدم تطابق الخصائص! الكود يتوقع {len(self.feature_names)}, المقياس يتوقع {len(self.scaler.feature_names_in_)}")
            
            return True
            
        except Exception as e:
            print(f"❌❌ [PatternEngineV8] فشل فادح في تحميل النماذج من R2: {e}")
            self.model = None
            self.scaler = None
            return False

    # 🔴 --- START OF CHANGE (V8.8) --- 🔴
    # (إعادة فحوصات السلامة (Column Checks) لجميع المؤشرات)
    def _extract_features(self, df_ranged: pd.DataFrame, df_indexed: pd.DataFrame) -> pd.DataFrame:
        """
        (الوصفة V8.8 - إرجاع 35 عموداً + فحوصات سلامة كاملة)
        """
        if not ta:
            raise ImportError("مكتبة pandas-ta غير مثبتة.")

        # (1. البدء بآخر صف من البيانات الأساسية)
        df_features = df_ranged.iloc[-1:].copy()
        
        # (2. بيانات مفهرسة لـ VWAP)
        h_idx = df_indexed['high']
        l_idx = df_indexed['low']
        c_idx = df_indexed['close']
        v_idx = df_indexed['volume']
        
        # (3. بيانات غير مفهرسة (السريعة) لباقي المؤشرات)
        c = df_ranged['close']
        h = df_ranged['high']
        l = df_ranged['low']
        v = df_ranged['volume']
        
        try:
            # --- حساب الـ 30 مؤشر (مع فحوصات السلامة) ---
            
            # (المؤشرات التي تُرجع سلسلة Series - آمنة نسبياً)
            df_features['RSI_14'] = ta.rsi(c, length=14).iloc[-1]
            df_features['SMA_20'] = ta.sma(c, length=20).iloc[-1]
            df_features['EMA_20'] = ta.ema(c, length=20).iloc[-1]
            df_features['MIDPOINT_14'] = ta.midpoint(c, length=14).iloc[-1]
            df_features['TEMA_20'] = ta.tema(c, length=20).iloc[-1]
            df_features['OBV'] = ta.obv(c, v).iloc[-1]
            df_features['AD'] = ta.ad(h, l, c, v).iloc[-1]
            df_features['ATRr_14'] = ta.atr(h, l, c, percent=True, length=14).iloc[-1]
            df_features['DPO_20'] = ta.dpo(c, length=20).iloc[-1]
            df_features['CMO_14'] = ta.cmo(c, length=14).iloc[-1]
            df_features['ROC_10'] = ta.roc(c, length=10).iloc[-1]
            df_features['WILLR_14'] = ta.willr(h, l, c, length=14).iloc[-1]

            # (الاستثناء: VWAP يستخدم بيانات مفهرسة)
            vwap_series = ta.vwap(h_idx, l_idx, c_idx, v_idx)
            if vwap_series is not None: 
                df_features['VWAP_D'] = vwap_series.iloc[-1]

            # --- (المؤشرات التي تُرجع DataFrame - تحتاج فحص سلامة) ---
            
            macd_data = ta.macd(c, fast=12, slow=26, signal=9)
            if macd_data is not None and not macd_data.empty and 'MACD_12_26_9' in macd_data.columns:
                df_features['MACD_12_26_9'] = macd_data['MACD_12_26_9'].iloc[-1]
                df_features['MACDh_12_26_9'] = macd_data['MACDh_12_26_9'].iloc[-1]
                df_features['MACDs_12_26_9'] = macd_data['MACDs_12_26_9'].iloc[-1]

            bb_data = ta.bbands(c, length=5, std=2.0)
            if bb_data is not None and not bb_data.empty and 'BBL_5_2.0' in bb_data.columns:
                df_features['BBL_5_2.0_2.0'] = bb_data['BBL_5_2.0'].iloc[-1] 
                df_features['BBM_5_2.0_2.0'] = bb_data['BBM_5_2.0'].iloc[-1]
                df_features['BBU_5_2.0_2.0'] = bb_data['BBU_5_2.0'].iloc[-1]
                df_features['BBB_5_2.0_2.0'] = bb_data['BBB_5_2.0'].iloc[-1]
                df_features['BBP_5_2.0_2.0'] = bb_data['BBP_5_2.0'].iloc[-1]

            stoch_data = ta.stoch(h, l, c, k=14, d=3, smooth_k=3)
            if stoch_data is not None and not stoch_data.empty and 'STOCHk_14_3_3' in stoch_data.columns:
                df_features['STOCHk_14_3_3'] = stoch_data['STOCHk_14_3_3'].iloc[-1]
                df_features['STOCHd_14_3_3'] = stoch_data['STOCHd_14_3_3'].iloc[-1]
                df_features['STOCHh_14_3_3'] = stoch_data['STOCHh_14_3_3'].iloc[-1]

            adx_data = ta.adx(h, l, c, length=14, adxr=2)
            if adx_data is not None and not adx_data.empty and 'ADX_14' in adx_data.columns:
                df_features['ADX_14'] = adx_data['ADX_14'].iloc[-1]
                df_features['ADXR_14_2'] = adx_data['ADXR_14_2'].iloc[-1]
                df_features['DMP_14'] = adx_data['DMP_14'].iloc[-1]
                df_features['DMN_14'] = adx_data['DMN_14'].iloc[-1]

            kvo_data = ta.kvo(h, l, c, v, fast=34, slow=55, signal=13)
            if kvo_data is not None and not kvo_data.empty and 'KVO_34_55_13' in kvo_data.columns:
                df_features['KVO_34_55_13'] = kvo_data['KVO_34_55_13'].iloc[-1]
                df_features['KVOs_34_55_13'] = kvo_data['KVOs_34_55_13'].iloc[-1]
        
        except Exception as e:
            # (هذا الخطأ يجب ألا يظهر الآن إلا في حالات نادرة جداً)
            print(f"❌ [PatternEngineV8.8] خطأ أثناء حساب المؤشرات وظيفياً: {e}")
            pass
        # --- (نهاية حساب المؤشرات) ---

        # (ملء أي قيم مفقودة (NaN) بـ 0 قبل إرسالها للمقياس)
        df_features.fillna(0, inplace=True)
        
        # (التأكد من أننا نرسل فقط الـ 35 عموداً التي يتوقعها المقياس)
        final_features_df = pd.DataFrame(columns=self.feature_names)
        
        for col in self.feature_names:
            if col in df_features:
                final_features_df[col] = df_features[col].values
            else:
                final_features_df[col] = 0 

        return final_features_df
    # 🔴 --- END OF CHANGE (V8.8) --- 🔴

    async def detect_chart_patterns(self, ohlcv_data: dict) -> dict:
        """
        (الدالة الرئيسية - لا تغيير هنا عن V8.7)
        """
        best_match = {
            'pattern_detected': 'no_clear_pattern',
            'pattern_confidence': 0,
            'predicted_direction': 'neutral',
            'timeframe': None,
            'details': {}
        }
        
        if not self.model or not self.scaler:
            if not hasattr(self, '_init_warned'):
                print("⚠️ [PatternEngineV8] النموذج/المقياس غير محمل. يجب استدعاء .initialize() أولاً.")
                self._init_warned = True
            return best_match
            
        all_results = []

        for timeframe, candles in ohlcv_data.items():
            if len(candles) >= max(self.window_size, 200):
                try:
                    window_candles = candles[-200:]
                    
                    # (1. نسخة غير مفهرسة (RangeIndex 0,1,2...))
                    df_ranged = pd.DataFrame(window_candles, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
                    
                    # (2. نسخة مفهرسة (DatetimeIndex))
                    df_indexed = df_ranged.copy()
                    df_indexed['timestamp'] = pd.to_datetime(df_indexed['timestamp'], unit='ms')
                    df_indexed.set_index('timestamp', inplace=True)

                    # (3. استخراج الخصائص (V8.8))
                    features_df = self._extract_features(df_ranged, df_indexed)
                    
                    if features_df is None or features_df.empty:
                        continue 
                        
                    # (4. تطبيع الخصائص (Scaler))
                    features_scaled = self.scaler.transform(features_df)
                    
                    # (5. التنبؤ بالاحتماليات (Probabilities))
                    probabilities = self.model.predict_proba(features_scaled)[0]
                    
                    best_class_index = np.argmax(probabilities)
                    confidence = probabilities[best_class_index]
                    pattern_name = self.class_names[best_class_index]
                    
                    if pattern_name != "Neutral / No Pattern" and confidence > 0.5:
                        all_results.append({
                            'pattern': pattern_name,
                            'confidence': float(confidence),
                            'timeframe': timeframe
                        })
                        
                except Exception as e:
                    print(f"❌ [PatternEngineV8.8] فشل التنبؤ لـ {timeframe}: {e}")
                    
        # (6. اختيار أفضل نمط)
        if all_results:
            best_result = max(all_results, key=lambda x: x['confidence'])
            
            direction = 'neutral'
            if "Bullish" in best_result['pattern']: direction = 'up'
            elif "Bearish" in best_result['pattern']: direction = 'down'

            best_match['pattern_detected'] = best_result['pattern']
            best_match['pattern_confidence'] = best_result['confidence']
            best_match['timeframe'] = best_result['timeframe']
            best_match['predicted_direction'] = direction
            best_match['details'] = {'ml_confidence': best_result['confidence']}

        return best_match

print("✅ ML Module: Pattern Engine V8.8 (Robust DataFrame Checks) loaded")