File size: 61,772 Bytes
571ec51
53cf6c0
 
 
925bbcf
53cf6c0
2850975
 
53cf6c0
 
 
 
 
 
 
 
 
 
 
 
925bbcf
07e5c3f
925bbcf
 
53cf6c0
2850975
 
 
 
 
b23db77
2850975
 
 
925bbcf
53cf6c0
 
 
925bbcf
53cf6c0
925bbcf
2850975
07e5c3f
 
 
 
2850975
 
 
07e5c3f
2850975
 
 
 
07e5c3f
2850975
 
 
 
07e5c3f
2850975
 
 
 
07e5c3f
2850975
 
 
 
07e5c3f
 
 
 
 
 
 
 
 
 
 
 
 
2850975
 
 
07e5c3f
 
 
 
 
 
 
 
925bbcf
2850975
 
925bbcf
 
53cf6c0
 
925bbcf
53cf6c0
925bbcf
2850975
07e5c3f
 
 
 
2850975
 
 
07e5c3f
2850975
 
 
 
 
 
 
 
 
07e5c3f
2850975
07e5c3f
2850975
 
 
 
 
 
 
07e5c3f
2850975
 
 
 
 
07e5c3f
2850975
925bbcf
2850975
 
925bbcf
 
53cf6c0
 
925bbcf
53cf6c0
925bbcf
2850975
07e5c3f
 
 
 
b23db77
2850975
 
 
 
 
 
 
07e5c3f
2850975
07e5c3f
2850975
07e5c3f
2850975
 
 
 
 
07e5c3f
2850975
 
07e5c3f
 
 
925bbcf
2850975
 
925bbcf
 
53cf6c0
b23db77
925bbcf
53cf6c0
925bbcf
2850975
07e5c3f
 
 
 
b23db77
07e5c3f
b23db77
 
 
 
 
 
07e5c3f
 
 
b23db77
 
 
 
 
 
 
 
 
 
 
 
07e5c3f
b23db77
 
 
 
 
 
07e5c3f
 
 
 
 
 
 
2850975
 
b23db77
 
07e5c3f
b23db77
 
 
2850975
 
 
b23db77
 
07e5c3f
b23db77
 
 
2850975
 
 
b23db77
 
07e5c3f
 
 
 
 
b23db77
 
925bbcf
2850975
 
925bbcf
 
53cf6c0
 
925bbcf
53cf6c0
925bbcf
2850975
07e5c3f
 
 
 
2850975
 
 
07e5c3f
2850975
 
 
 
 
 
 
07e5c3f
2850975
925bbcf
2850975
 
925bbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
55c88d4
925bbcf
 
 
 
 
 
 
 
 
 
 
 
 
55c88d4
925bbcf
 
 
 
 
 
 
 
 
 
 
 
55c88d4
925bbcf
 
 
 
 
 
b23db77
 
 
925bbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b23db77
925bbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b23db77
925bbcf
 
b23db77
925bbcf
 
 
55c88d4
925bbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b23db77
925bbcf
b23db77
925bbcf
b23db77
925bbcf
b23db77
925bbcf
b23db77
925bbcf
 
 
 
 
53cf6c0
 
 
 
 
925bbcf
53cf6c0
 
925bbcf
ee8c551
 
 
53cf6c0
 
 
ee8c551
571ec51
53cf6c0
 
ee8c551
 
 
53cf6c0
 
ee8c551
 
 
 
53cf6c0
 
 
925bbcf
571ec51
53cf6c0
ee8c551
571ec51
 
53cf6c0
 
925bbcf
53cf6c0
 
ee8c551
53cf6c0
ee8c551
571ec51
ee8c551
571ec51
ee8c551
571ec51
ee8c551
571ec51
53cf6c0
925bbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07e5c3f
 
 
 
 
 
 
925bbcf
 
 
 
 
 
 
 
 
 
 
 
07e5c3f
925bbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b23db77
 
 
925bbcf
 
 
 
 
 
 
b23db77
 
 
925bbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b23db77
 
925bbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07e5c3f
925bbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b23db77
925bbcf
 
 
 
 
 
 
 
 
 
 
b23db77
925bbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53cf6c0
 
 
 
925bbcf
53cf6c0
925bbcf
 
 
53cf6c0
 
 
 
 
 
 
 
 
 
 
925bbcf
53cf6c0
 
ee8c551
925bbcf
ee8c551
1b0c9db
55c88d4
53cf6c0
 
 
ee8c551
53cf6c0
1b0c9db
ee8c551
53cf6c0
 
 
55c88d4
 
1b0c9db
53cf6c0
 
 
 
925bbcf
55c88d4
 
ee8c551
53cf6c0
ee8c551
 
 
 
 
53cf6c0
 
 
 
 
 
ee8c551
1b0c9db
ee8c551
53cf6c0
ee8c551
55c88d4
 
925bbcf
53cf6c0
55c88d4
ee8c551
 
 
 
 
 
 
 
 
925bbcf
53cf6c0
925bbcf
53cf6c0
 
 
ee8c551
925bbcf
53cf6c0
 
925bbcf
ee8c551
 
925bbcf
53cf6c0
925bbcf
ee8c551
925bbcf
 
 
ee8c551
 
53cf6c0
 
55c88d4
 
53cf6c0
 
925bbcf
53cf6c0
ee8c551
 
53cf6c0
 
 
925bbcf
53cf6c0
 
 
 
ee8c551
53cf6c0
 
925bbcf
53cf6c0
925bbcf
 
 
ee8c551
 
 
 
 
53cf6c0
ee8c551
 
 
 
 
53cf6c0
 
55c88d4
 
53cf6c0
 
925bbcf
53cf6c0
 
 
ee8c551
1b0c9db
53cf6c0
 
925bbcf
53cf6c0
ee8c551
 
 
 
 
 
 
 
 
 
 
53cf6c0
ee8c551
 
 
 
 
 
53cf6c0
 
55c88d4
 
53cf6c0
 
925bbcf
53cf6c0
 
 
ee8c551
53cf6c0
 
 
ee8c551
 
 
 
 
 
 
53cf6c0
 
55c88d4
 
53cf6c0
 
925bbcf
53cf6c0
bb03264
 
55c88d4
bb03264
 
 
 
 
 
 
 
 
 
 
 
55c88d4
53cf6c0
55c88d4
 
53cf6c0
 
925bbcf
53cf6c0
 
 
ee8c551
53cf6c0
 
 
925bbcf
53cf6c0
 
 
ee8c551
 
 
 
 
53cf6c0
 
55c88d4
 
53cf6c0
 
925bbcf
53cf6c0
 
ee8c551
55c88d4
 
 
925bbcf
55c88d4
 
 
ee8c551
 
925bbcf
ee8c551
 
 
53cf6c0
ee8c551
925bbcf
53cf6c0
ee8c551
53cf6c0
 
55c88d4
 
53cf6c0
 
 
 
 
 
 
 
925bbcf
 
53cf6c0
925bbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
53cf6c0
925bbcf
 
 
 
 
 
21a39fc
925bbcf
21a39fc
925bbcf
55c88d4
 
 
21a39fc
925bbcf
 
21a39fc
ffe93c4
 
 
 
 
925bbcf
 
 
571ec51
925bbcf
 
 
 
 
 
 
 
 
 
 
 
 
571ec51
925bbcf
 
571ec51
925bbcf
55c88d4
 
 
925bbcf
ffe93c4
 
925bbcf
 
 
 
 
 
 
 
 
 
 
 
b23db77
07e5c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925bbcf
 
 
53cf6c0
55c88d4
 
925bbcf
55c88d4
925bbcf
55c88d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
571ec51
925bbcf
571ec51
 
925bbcf
55c88d4
925bbcf
 
b23db77
571ec51
925bbcf
 
571ec51
925bbcf
 
571ec51
2850975
55c88d4
2850975
 
 
571ec51
 
925bbcf
2850975
 
 
 
 
571ec51
 
925bbcf
 
 
 
 
 
 
ee8c551
925bbcf
 
 
ee8c551
925bbcf
 
 
ee8c551
925bbcf
ee8c551
925bbcf
 
 
 
 
 
 
 
55c88d4
 
 
925bbcf
ee8c551
925bbcf
571ec51
2850975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7dc94c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55c88d4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
# ML.py
import pandas as pd
import pandas_ta as ta
import numpy as np
from datetime import datetime, timedelta
import asyncio
import json
import re

class AdvancedTechnicalAnalyzer:
    def __init__(self):
        self.indicators_config = {
            'trend': ['ema_9', 'ema_21', 'ema_50', 'ema_200', 'ichimoku', 'adx', 'parabolic_sar', 'dmi'],
            'momentum': ['rsi', 'stoch_rsi', 'macd', 'williams_r', 'cci', 'awesome_oscillator', 'momentum'],
            'volatility': ['bbands', 'atr', 'keltner', 'donchian', 'rvi'],
            'volume': ['vwap', 'obv', 'mfi', 'volume_profile', 'ad', 'volume_oscillator'],
            'cycle': ['hull_ma', 'supertrend', 'zigzag', 'fisher_transform']
        }
    
    def calculate_all_indicators(self, dataframe, timeframe):
        """حساب جميع المؤشرات الفنية للإطار الزمني المحدد"""
        if dataframe.empty or dataframe is None: 
            return {}
        
        indicators = {}
        
        try:
            indicators.update(self._calculate_trend_indicators(dataframe))
            indicators.update(self._calculate_momentum_indicators(dataframe))
            indicators.update(self._calculate_volatility_indicators(dataframe))
            indicators.update(self._calculate_volume_indicators(dataframe, timeframe))
            indicators.update(self._calculate_cycle_indicators(dataframe))
        except Exception as e:
            print(f"⚠️ خطأ في حساب المؤشرات لـ {timeframe}: {e}")
        
        return indicators
    
    def _calculate_trend_indicators(self, dataframe):
        """حساب مؤشرات الاتجاه"""
        trend = {}
        
        try:
            # التحقق من وجود البيانات الأساسية
            if dataframe is None or dataframe.empty or 'close' not in dataframe.columns:
                return {}
            
            # المتوسطات المتحركة
            if len(dataframe) >= 9: 
                ema_9 = ta.ema(dataframe['close'], length=9)
                if ema_9 is not None and not ema_9.empty and not pd.isna(ema_9.iloc[-1]): 
                    trend['ema_9'] = float(ema_9.iloc[-1])
            
            if len(dataframe) >= 21: 
                ema_21 = ta.ema(dataframe['close'], length=21)
                if ema_21 is not None and not ema_21.empty and not pd.isna(ema_21.iloc[-1]): 
                    trend['ema_21'] = float(ema_21.iloc[-1])
            
            if len(dataframe) >= 50: 
                ema_50 = ta.ema(dataframe['close'], length=50)
                if ema_50 is not None and not ema_50.empty and not pd.isna(ema_50.iloc[-1]): 
                    trend['ema_50'] = float(ema_50.iloc[-1])
            
            if len(dataframe) >= 200: 
                ema_200 = ta.ema(dataframe['close'], length=200)
                if ema_200 is not None and not ema_200.empty and not pd.isna(ema_200.iloc[-1]): 
                    trend['ema_200'] = float(ema_200.iloc[-1])
            
            # إيشيموكو
            if len(dataframe) >= 26:
                try:
                    ichimoku = ta.ichimoku(dataframe['high'], dataframe['low'], dataframe['close'])
                    if ichimoku is not None and len(ichimoku) > 0:
                        # التحقق من أن ichimoku ليس None وأنه يحتوي على بيانات
                        conversion_line = ichimoku[0].get('ITS_9') if ichimoku[0] is not None else None
                        base_line = ichimoku[0].get('IKS_26') if ichimoku[0] is not None else None
                        
                        if conversion_line is not None and not conversion_line.empty and not pd.isna(conversion_line.iloc[-1]): 
                            trend['ichimoku_conversion'] = float(conversion_line.iloc[-1])
                        if base_line is not None and not base_line.empty and not pd.isna(base_line.iloc[-1]): 
                            trend['ichimoku_base'] = float(base_line.iloc[-1])
                except Exception as ichimoku_error:
                    print(f"⚠️ خطأ في حساب إيشيموكو: {ichimoku_error}")
            
            # ADX - قوة الاتجاه
            if len(dataframe) >= 14:
                try:
                    adx_result = ta.adx(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
                    if adx_result is not None and not adx_result.empty:
                        adx_value = adx_result.get('ADX_14')
                        if adx_value is not None and not adx_value.empty and not pd.isna(adx_value.iloc[-1]): 
                            trend['adx'] = float(adx_value.iloc[-1])
                except Exception as adx_error:
                    print(f"⚠️ خطأ في حساب ADX: {adx_error}")
        
        except Exception as e:
            print(f"⚠️ خطأ في حساب مؤشرات الاتجاه: {e}")
        
        return {key: value for key, value in trend.items() if value is not None and not np.isnan(value)}
    
    def _calculate_momentum_indicators(self, dataframe):
        """حساب مؤشرات الزخم"""
        momentum = {}
        
        try:
            # التحقق من وجود البيانات الأساسية
            if dataframe is None or dataframe.empty or 'close' not in dataframe.columns:
                return {}
            
            # RSI
            if len(dataframe) >= 14:
                rsi = ta.rsi(dataframe['close'], length=14)
                if rsi is not None and not rsi.empty and not pd.isna(rsi.iloc[-1]): 
                    momentum['rsi'] = float(rsi.iloc[-1])
            
            # MACD
            if len(dataframe) >= 26:
                macd = ta.macd(dataframe['close'])
                if macd is not None and not macd.empty:
                    macd_hist = macd.get('MACDh_12_26_9')
                    macd_line = macd.get('MACD_12_26_9')
                    
                    if macd_hist is not None and not macd_hist.empty and not pd.isna(macd_hist.iloc[-1]): 
                        momentum['macd_hist'] = float(macd_hist.iloc[-1])
                    if macd_line is not None and not macd_line.empty and not pd.isna(macd_line.iloc[-1]): 
                        momentum['macd_line'] = float(macd_line.iloc[-1])
            
            # ستوكاستك RSI
            if len(dataframe) >= 14:
                stoch_rsi = ta.stochrsi(dataframe['close'], length=14)
                if stoch_rsi is not None and not stoch_rsi.empty:
                    stoch_k = stoch_rsi.get('STOCHRSIk_14_14_3_3')
                    if stoch_k is not None and not stoch_k.empty and not pd.isna(stoch_k.iloc[-1]): 
                        momentum['stoch_rsi_k'] = float(stoch_k.iloc[-1])
            
            # ويليامز %R
            if len(dataframe) >= 14:
                williams = ta.willr(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
                if williams is not None and not williams.empty and not pd.isna(williams.iloc[-1]): 
                    momentum['williams_r'] = float(williams.iloc[-1])
        
        except Exception as e:
            print(f"⚠️ خطأ في حساب مؤشرات الزخم: {e}")
        
        return {key: value for key, value in momentum.items() if value is not None and not np.isnan(value)}
    
    def _calculate_volatility_indicators(self, dataframe):
        """حساب مؤشرات التقلب"""
        volatility = {}
        
        try:
            # التحقق من وجود البيانات الأساسية
            if dataframe is None or dataframe.empty or 'close' not in dataframe.columns:
                return {}
            
            # بولينجر باندز
            if len(dataframe) >= 20:
                bollinger_bands = ta.bbands(dataframe['close'], length=20, std=2)
                if bollinger_bands is not None and not bollinger_bands.empty:
                    bb_lower = bollinger_bands.get('BBL_20_2.0')
                    bb_upper = bollinger_bands.get('BBU_20_2.0') 
                    bb_middle = bollinger_bands.get('BBM_20_2.0')
                    
                    if bb_lower is not None and not bb_lower.empty and not pd.isna(bb_lower.iloc[-1]): 
                        volatility['bb_lower'] = float(bb_lower.iloc[-1])
                    if bb_upper is not None and not bb_upper.empty and not pd.isna(bb_upper.iloc[-1]): 
                        volatility['bb_upper'] = float(bb_upper.iloc[-1])
                    if bb_middle is not None and not bb_middle.empty and not pd.isna(bb_middle.iloc[-1]): 
                        volatility['bb_middle'] = float(bb_middle.iloc[-1])
            
            # متوسط المدى الحقيقي (ATR)
            if len(dataframe) >= 14:
                average_true_range = ta.atr(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
                if average_true_range is not None and not average_true_range.empty and not pd.isna(average_true_range.iloc[-1]): 
                    atr_value = float(average_true_range.iloc[-1])
                    volatility['atr'] = atr_value
                    current_close = dataframe['close'].iloc[-1] if not dataframe['close'].empty else 0
                    if atr_value and current_close > 0: 
                        volatility['atr_percent'] = (atr_value / current_close) * 100
        
        except Exception as e:
            print(f"⚠️ خطأ في حساب مؤشرات التقلب: {e}")
        
        return {key: value for key, value in volatility.items() if value is not None and not np.isnan(value)}
    
    def _calculate_volume_indicators(self, dataframe, timeframe):
        """حساب مؤشرات الحجم"""
        volume = {}
        
        try:
            # التحقق من وجود البيانات الأساسية
            if dataframe is None or dataframe.empty or 'close' not in dataframe.columns or 'volume' not in dataframe.columns:
                return {}
            
            # VWAP - إصلاح المشكلة هنا
            if len(dataframe) >= 1:
                try:
                    # إنشاء نسخة من البيانات مع DatetimeIndex مرتب
                    df_vwap = dataframe.copy()
                    
                    # تحويل timestamp إلى datetime وضبطه كـ index
                    if not isinstance(df_vwap.index, pd.DatetimeIndex):
                        if 'timestamp' in df_vwap.columns:
                            df_vwap['timestamp'] = pd.to_datetime(df_vwap['timestamp'], unit='ms')
                            df_vwap.set_index('timestamp', inplace=True)
                    
                    # التأكد من أن الفهرس مرتب
                    df_vwap.sort_index(inplace=True)
                    
                    # حساب VWAP
                    volume_weighted_average_price = ta.vwap(
                        high=df_vwap['high'],
                        low=df_vwap['low'], 
                        close=df_vwap['close'],
                        volume=df_vwap['volume']
                    )
                    
                    if volume_weighted_average_price is not None and not volume_weighted_average_price.empty and not pd.isna(volume_weighted_average_price.iloc[-1]): 
                        volume['vwap'] = float(volume_weighted_average_price.iloc[-1])
                        
                except Exception as vwap_error:
                    print(f"⚠️ خطأ في حساب VWAP لـ {timeframe}: {vwap_error}")
                    # استخدام بديل لـ VWAP في حالة الخطأ
                    if len(dataframe) >= 20:
                        try:
                            typical_price = (dataframe['high'] + dataframe['low'] + dataframe['close']) / 3
                            vwap_simple = (typical_price * dataframe['volume']).sum() / dataframe['volume'].sum()
                            if not np.isnan(vwap_simple):
                                volume['vwap'] = float(vwap_simple)
                        except Exception as simple_vwap_error:
                            print(f"⚠️ خطأ في حساب VWAP البديل: {simple_vwap_error}")
            
            # OBV
            try:
                on_balance_volume = ta.obv(dataframe['close'], dataframe['volume'])
                if on_balance_volume is not None and not on_balance_volume.empty and not pd.isna(on_balance_volume.iloc[-1]): 
                    volume['obv'] = float(on_balance_volume.iloc[-1])
            except Exception as obv_error:
                print(f"⚠️ خطأ في حساب OBV: {obv_error}")
            
            # MFI
            if len(dataframe) >= 14:
                try:
                    money_flow_index = ta.mfi(dataframe['high'], dataframe['low'], dataframe['close'], dataframe['volume'], length=14)
                    if money_flow_index is not None and not money_flow_index.empty and not pd.isna(money_flow_index.iloc[-1]): 
                        volume['mfi'] = float(money_flow_index.iloc[-1])
                except Exception as mfi_error:
                    print(f"⚠️ خطأ في حساب MFI: {mfi_error}")
            
            # نسبة الحجم
            if len(dataframe) >= 20:
                try:
                    volume_avg_20 = float(dataframe['volume'].tail(20).mean())
                    current_volume = float(dataframe['volume'].iloc[-1]) if not dataframe['volume'].empty else 0
                    if volume_avg_20 and volume_avg_20 > 0 and current_volume > 0: 
                        volume_ratio = current_volume / volume_avg_20
                        if not np.isnan(volume_ratio):
                            volume['volume_ratio'] = volume_ratio
                except Exception as volume_error:
                    print(f"⚠️ خطأ في حساب نسبة الحجم: {volume_error}")
        
        except Exception as e:
            print(f"⚠️ خطأ في حساب مؤشرات الحجم: {e}")
        
        return {key: value for key, value in volume.items() if value is not None and not np.isnan(value)}
    
    def _calculate_cycle_indicators(self, dataframe):
        """حساب مؤشرات الدورة"""
        cycle = {}
        
        try:
            # التحقق من وجود البيانات الأساسية
            if dataframe is None or dataframe.empty or 'close' not in dataframe.columns:
                return {}
            
            # هول موفينج افريج
            if len(dataframe) >= 9:
                hull_moving_average = ta.hma(dataframe['close'], length=9)
                if hull_moving_average is not None and not hull_moving_average.empty and not pd.isna(hull_moving_average.iloc[-1]): 
                    cycle['hull_ma'] = float(hull_moving_average.iloc[-1])
            
            # سوبرتريند
            if len(dataframe) >= 10:
                supertrend = ta.supertrend(dataframe['high'], dataframe['low'], dataframe['close'], length=10, multiplier=3)
                if supertrend is not None and not supertrend.empty:
                    supertrend_value = supertrend.get('SUPERT_10_3.0')
                    if supertrend_value is not None and not supertrend_value.empty and not pd.isna(supertrend_value.iloc[-1]): 
                        cycle['supertrend'] = float(supertrend_value.iloc[-1])
        
        except Exception as e:
            print(f"⚠️ خطأ في حساب مؤشرات الدورة: {e}")
        
        return {key: value for key, value in cycle.items() if value is not None and not np.isnan(value)}

class MonteCarloAnalyzer:
    def __init__(self):
        self.simulation_results = {}
    
    async def predict_1h_probability(self, ohlcv_data):
        """
        محاكاة مونت كارلو للتنبؤ بالساعة القادمة
        تركز على احتمالية تحقيق ربح 0.5% في الساعة القادمة
        """
        try:
            if not ohlcv_data or '1h' not in ohlcv_data or len(ohlcv_data['1h']) < 24:
                return None  # ❌ لا نرجع قيمة افتراضية
            
            # استخدام بيانات 1h و 15m معاً لدقة أفضل
            all_closes = []
            
            # إضافة بيانات 1h
            all_closes.extend([candle[4] for candle in ohlcv_data['1h']])
            
            # إضافة بيانات 15m إن وجدت
            if '15m' in ohlcv_data and len(ohlcv_data['15m']) >= 16:
                recent_15m = [candle[4] for candle in ohlcv_data['15m'][-16:]]
                all_closes.extend(recent_15m)
            
            if len(all_closes) < 30:
                return None  # ❌ لا نرجع قيمة افتراضية
            
            closes = np.array(all_closes)
            current_price = closes[-1]
            
            # حساب العوائد اللوغاريتمية بدقة
            log_returns = []
            for i in range(1, len(closes)):
                if closes[i-1] > 0:
                    log_return = np.log(closes[i] / closes[i-1])
                    log_returns.append(log_return)
            
            if len(log_returns) < 20:
                return None  # ❌ لا نرجع قيمة افتراضية
            
            log_returns = np.array(log_returns)
            mean_return = np.mean(log_returns)
            std_return = np.std(log_returns)
            
            # محاكاة مونت كارلو للساعة القادمة
            num_simulations = 2000
            target_periods = 1
            profit_threshold = 0.005
            
            success_count = 0
            simulation_details = []
            
            for i in range(num_simulations):
                simulated_price = current_price
                
                # محاكاة حركة السعر للساعة القادمة
                for period in range(target_periods):
                    random_return = np.random.normal(mean_return, std_return)
                    simulated_price *= np.exp(random_return)
                
                price_change = (simulated_price - current_price) / current_price
                if price_change >= profit_threshold:
                    success_count += 1
                
                if i < 100:
                    simulation_details.append({
                        'simulation': i,
                        'final_price': simulated_price,
                        'profit_percent': price_change * 100
                    })
            
            probability = success_count / num_simulations
            
            trend_adjustment = self._calculate_trend_adjustment(closes)
            adjusted_probability = probability * trend_adjustment
            
            self.simulation_results = {
                'base_probability': probability,
                'adjusted_probability': adjusted_probability,
                'success_count': success_count,
                'total_simulations': num_simulations,
                'mean_return': mean_return,
                'std_return': std_return,
                'trend_adjustment': trend_adjustment,
                'simulation_details': simulation_details[:10]
            }
            
            return min(max(adjusted_probability, 0.01), 0.99)
            
        except Exception as e:
            print(f"❌ خطأ في محاكاة مونت كارلو: {e}")
            return None  # ❌ لا نرجع قيمة افتراضية
    
    def _calculate_trend_adjustment(self, closes):
        """حساب معامل تعديل الاتجاه"""
        try:
            if len(closes) < 10:
                return 1.0
            
            recent_trend = (closes[-1] - closes[-10]) / closes[-10]
            
            gains = []
            losses = []
            for i in range(1, min(14, len(closes))):
                change = closes[-(i+1)] - closes[-i]
                if change > 0:
                    gains.append(change)
                else:
                    losses.append(abs(change))
            
            avg_gain = np.mean(gains) if gains else 0
            avg_loss = np.mean(losses) if losses else 1
            rs = avg_gain / avg_loss
            trend_strength = 100 - (100 / (1 + rs))
            
            if recent_trend > 0.02 and trend_strength > 60:
                return 1.3
            elif recent_trend > 0.01 and trend_strength > 50:
                return 1.15
            elif recent_trend < -0.02 and trend_strength < 40:
                return 0.7
            elif recent_trend < -0.01 and trend_strength < 50:
                return 0.85
            else:
                return 1.0
                
        except Exception as e:
            print(f"❌ خطأ في حساب تعديل الاتجاه: {e}")
            return 1.0

class PatternEnhancedStrategyEngine:
    def __init__(self, data_manager, learning_engine):
        self.data_manager = data_manager
        self.learning_engine = learning_engine
        self.pattern_analyzer = ChartPatternAnalyzer()
        
    async def enhance_strategy_with_patterns(self, strategy_scores, pattern_analysis, symbol):
        """تعزيز الاستراتيجيات بناءً على الأنماط المكتشفة"""
        if not pattern_analysis or pattern_analysis.get('pattern_detected') in ['no_clear_pattern', 'insufficient_data']: 
            return strategy_scores
            
        pattern_confidence = pattern_analysis.get('pattern_confidence', 0)
        pattern_name = pattern_analysis.get('pattern_detected', '')
        predicted_direction = pattern_analysis.get('predicted_direction', '')
        
        if pattern_confidence >= 0.6:
            enhancement_factor = self._calculate_pattern_enhancement(pattern_confidence, pattern_name)
            enhanced_strategies = self._get_pattern_appropriate_strategies(pattern_name, predicted_direction)
            
            print(f"🎯 تعزيز استراتيجيات {symbol} بناءً على نمط {pattern_name} (ثقة: {pattern_confidence:.2f})")
            
            for strategy in enhanced_strategies:
                if strategy in strategy_scores:
                    original_score = strategy_scores[strategy]
                    strategy_scores[strategy] = min(original_score * enhancement_factor, 1.0)
                    print(f"   📈 {strategy}: {original_score:.3f}{strategy_scores[strategy]:.3f}")
        
        return strategy_scores
    
    def _calculate_pattern_enhancement(self, pattern_confidence, pattern_name):
        """حساب عامل التعزيز بناءً على ثقة النمط ونوعه"""
        base_enhancement = 1.0 + (pattern_confidence * 0.3)
        high_reliability_patterns = ['Double Top', 'Double Bottom', 'Head & Shoulders', 'Cup and Handle']
        if pattern_name in high_reliability_patterns: 
            base_enhancement *= 1.1
        return min(base_enhancement, 1.5)
    
    def _get_pattern_appropriate_strategies(self, pattern_name, direction):
        """تحديد الاستراتيجيات المناسبة للنمط المكتشف"""
        reversal_patterns = ['Double Top', 'Double Bottom', 'Head & Shoulders', 'Triple Top', 'Triple Bottom']
        continuation_patterns = ['Flags', 'Pennants', 'Triangles', 'Rectangles']
        
        if pattern_name in reversal_patterns:
            if direction == 'down': 
                return ['breakout_momentum', 'trend_following']
            else: 
                return ['mean_reversion', 'breakout_momentum']
        elif pattern_name in continuation_patterns: 
            return ['trend_following', 'breakout_momentum']
        else: 
            return ['breakout_momentum', 'hybrid_ai']

class ChartPatternAnalyzer:
    def __init__(self):
        self.pattern_cache = {}
    
    async def detect_chart_patterns(self, ohlcv_data):
        """اكتشاف الأنماط البيانية لجميع الأطر الزمنية"""
        patterns = {
            'pattern_detected': 'no_clear_pattern',
            'pattern_confidence': 0,
            'predicted_direction': 'neutral',
            'timeframe_analysis': {},
            'all_patterns': []
        }
        
        try:
            for timeframe, candles in ohlcv_data.items():
                if candles and len(candles) >= 20:
                    dataframe = self._create_dataframe(candles)
                    timeframe_pattern = await self._analyze_timeframe_patterns(dataframe, timeframe)
                    patterns['timeframe_analysis'][timeframe] = timeframe_pattern
                    patterns['all_patterns'].append(timeframe_pattern)
                    
                    if timeframe_pattern['confidence'] > patterns['pattern_confidence']:
                        patterns.update({
                            'pattern_detected': timeframe_pattern['pattern'],
                            'pattern_confidence': timeframe_pattern['confidence'],
                            'predicted_direction': timeframe_pattern['direction']
                        })
            
            return patterns
            
        except Exception as e:
            print(f"❌ خطأ في اكتشاف الأنماط: {e}")
            return patterns
    
    def _create_dataframe(self, candles):
        """إنشاء DataFrame من بيانات الشموع"""
        try:
            df = pd.DataFrame(candles, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
            df[['open', 'high', 'low', 'close', 'volume']] = df[['open', 'high', 'low', 'close', 'volume']].astype(float)
            return df
        except Exception as e:
            print(f"❌ خطأ في إنشاء DataFrame: {e}")
            return pd.DataFrame()
    
    async def _analyze_timeframe_patterns(self, dataframe, timeframe):
        """تحليل الأنماط لإطار زمني محدد"""
        pattern_info = {
            'pattern': 'no_clear_pattern',
            'confidence': 0,
            'direction': 'neutral',
            'timeframe': timeframe,
            'details': {}
        }
        
        try:
            if dataframe is None or dataframe.empty or len(dataframe) < 20:
                return pattern_info
            
            closes = dataframe['close'].values
            highs = dataframe['high'].values
            lows = dataframe['low'].values
            current_price = closes[-1]
            
            patterns_detected = []
            
            double_pattern = self._detect_double_pattern(highs, lows, closes)
            if double_pattern['detected']:
                patterns_detected.append(double_pattern)
            
            breakout_pattern = self._detect_breakout_pattern(highs, lows, closes)
            if breakout_pattern['detected']:
                patterns_detected.append(breakout_pattern)
            
            trend_pattern = self._detect_trend_pattern(dataframe)
            if trend_pattern['detected']:
                patterns_detected.append(trend_pattern)
            
            support_resistance_pattern = self._detect_support_resistance(highs, lows, closes)
            if support_resistance_pattern['detected']:
                patterns_detected.append(support_resistance_pattern)
            
            if patterns_detected:
                best_pattern = max(patterns_detected, key=lambda x: x['confidence'])
                pattern_info.update({
                    'pattern': best_pattern['pattern'],
                    'confidence': best_pattern['confidence'],
                    'direction': best_pattern.get('direction', 'neutral'),
                    'details': best_pattern.get('details', {})
                })
            
            return pattern_info
            
        except Exception as e:
            print(f"❌ خطأ في تحليل الأنماط للإطار {timeframe}: {e}")
            return pattern_info
    
    def _detect_double_pattern(self, highs, lows, closes):
        """كشف نمط القمة المزدوجة أو القاع المزدوج"""
        try:
            if len(highs) < 15:
                return {'detected': False}
            
            recent_highs = highs[-15:]
            recent_lows = lows[-15:]
            
            high_indices = np.argsort(recent_highs)[-2:]
            high_indices.sort()
            
            low_indices = np.argsort(recent_lows)[:2]
            low_indices.sort()
            
            double_top = False
            double_bottom = False
            
            if len(high_indices) == 2:
                high1 = recent_highs[high_indices[0]]
                high2 = recent_highs[high_indices[1]]
                time_diff = high_indices[1] - high_indices[0]
                
                if (abs(high1 - high2) / high1 < 0.02 and
                    time_diff >= 3 and time_diff <= 10 and
                    closes[-1] < min(high1, high2)):
                    double_top = True
            
            if len(low_indices) == 2:
                low1 = recent_lows[low_indices[0]]
                low2 = recent_lows[low_indices[1]]
                time_diff = low_indices[1] - low_indices[0]
                
                if (abs(low1 - low2) / low1 < 0.02 and
                    time_diff >= 3 and time_diff <= 10 and
                    closes[-1] > max(low1, low2)):
                    double_bottom = True
            
            if double_top:
                return {
                    'detected': True,
                    'pattern': 'Double Top',
                    'confidence': 0.75,
                    'direction': 'down',
                    'details': {
                        'resistance_level': np.mean([high1, high2]),
                        'breakdown_level': min(lows[-5:])
                    }
                }
            elif double_bottom:
                return {
                    'detected': True,
                    'pattern': 'Double Bottom', 
                    'confidence': 0.75,
                    'direction': 'up',
                    'details': {
                        'support_level': np.mean([low1, low2]),
                        'breakout_level': max(highs[-5:])
                    }
                }
            
            return {'detected': False}
            
        except Exception as e:
            return {'detected': False}
    
    def _detect_breakout_pattern(self, highs, lows, closes):
        """كشف نمط الاختراق"""
        try:
            if len(highs) < 25:
                return {'detected': False}
            
            current_price = closes[-1]
            
            resistance = np.max(highs[-25:-5])
            support = np.min(lows[-25:-5])
            
            if current_price > resistance * 1.01:
                return {
                    'detected': True,
                    'pattern': 'Breakout Up',
                    'confidence': 0.8,
                    'direction': 'up',
                    'details': {
                        'breakout_level': resistance,
                        'target_level': resistance * 1.05
                    }
                }
            elif current_price < support * 0.99:
                return {
                    'detected': True,
                    'pattern': 'Breakout Down',
                    'confidence': 0.8,
                    'direction': 'down',
                    'details': {
                        'breakdown_level': support,
                        'target_level': support * 0.95
                    }
                }
            
            return {'detected': False}
            
        except Exception as e:
            return {'detected': False}
    
    def _detect_trend_pattern(self, dataframe):
        """كشف نمط الاتجاه"""
        try:
            if dataframe is None or dataframe.empty or len(dataframe) < 20:
                return {'detected': False}
            
            closes = dataframe['close'].values
            
            ma_short = np.mean(closes[-5:])
            ma_medium = np.mean(closes[-13:])
            ma_long = np.mean(closes[-21:])
            
            if ma_short > ma_medium > ma_long and closes[-1] > ma_short:
                trend_strength = (ma_short - ma_long) / ma_long
                confidence = min(0.3 + trend_strength * 10, 0.8)
                return {
                    'detected': True,
                    'pattern': 'Uptrend',
                    'confidence': confidence,
                    'direction': 'up',
                    'details': {
                        'trend_strength': trend_strength,
                        'support_level': ma_medium
                    }
                }
            elif ma_short < ma_medium < ma_long and closes[-1] < ma_short:
                trend_strength = (ma_long - ma_short) / ma_long
                confidence = min(0.3 + trend_strength * 10, 0.8)
                return {
                    'detected': True,
                    'pattern': 'Downtrend',
                    'confidence': confidence,
                    'direction': 'down',
                    'details': {
                        'trend_strength': trend_strength,
                        'resistance_level': ma_medium
                    }
                }
            
            return {'detected': False}
            
        except Exception as e:
            return {'detected': False}
    
    def _detect_support_resistance(self, highs, lows, closes):
        """كشف مستويات الدعم والمقاومة"""
        try:
            if len(highs) < 20:
                return {'detected': False}
            
            current_price = closes[-1]
            
            resistance_level = np.max(highs[-20:])
            support_level = np.min(lows[-20:])
            
            position = (current_price - support_level) / (resistance_level - support_level)
            
            if position < 0.2:
                return {
                    'detected': True,
                    'pattern': 'Near Support',
                    'confidence': 0.6,
                    'direction': 'up',
                    'details': {
                        'support_level': support_level,
                        'resistance_level': resistance_level,
                        'position': position
                    }
                }
            elif position > 0.8:
                return {
                    'detected': True,
                    'pattern': 'Near Resistance',
                    'confidence': 0.6,
                    'direction': 'down',
                    'details': {
                        'support_level': support_level,
                        'resistance_level': resistance_level,
                        'position': position
                    }
                }
            
            return {'detected': False}
            
        except Exception as e:
            return {'detected': False}

class MultiStrategyEngine:
    def __init__(self, data_manager, learning_engine):
        self.data_manager = data_manager
        self.learning_engine = learning_engine
        self.technical_analyzer = AdvancedTechnicalAnalyzer()
        self.pattern_enhancer = PatternEnhancedStrategyEngine(data_manager, learning_engine)
        self.monte_carlo_analyzer = MonteCarloAnalyzer()
        self.pattern_analyzer = ChartPatternAnalyzer()
        
        self.strategies = {
            'trend_following': self._trend_following_strategy,
            'mean_reversion': self._mean_reversion_strategy,
            'breakout_momentum': self._breakout_momentum_strategy,
            'volume_spike': self._volume_spike_strategy,
            'whale_tracking': self._whale_tracking_strategy,
            'pattern_recognition': self._pattern_recognition_strategy,
            'hybrid_ai': self._hybrid_ai_strategy
        }
    
    async def evaluate_all_strategies(self, symbol_data, market_context):
        """تقييم جميع استراتيجيات التداول"""
        try:
            if self.learning_engine and hasattr(self.learning_engine, 'initialized') and self.learning_engine.initialized:
                try: 
                    market_condition = market_context.get('market_trend', 'sideways_market')
                    optimized_weights = await self.learning_engine.get_optimized_strategy_weights(market_condition)
                except Exception as e: 
                    # ❌ لا نستخدم قيم افتراضية، نستخدم الأوزان الأساسية
                    optimized_weights = await self.get_default_weights()
            else:
                optimized_weights = await self.get_default_weights()
                
            strategy_scores = {}
            base_scores = {}
            
            for strategy_name, strategy_function in self.strategies.items():
                try: 
                    base_score = await strategy_function(symbol_data, market_context)
                    if base_score is None:  # ❌ إذا فشلت الاستراتيجية، لا نستخدم قيم افتراضية
                        continue
                    base_scores[strategy_name] = base_score
                    weight = optimized_weights.get(strategy_name, 0.1)
                    weighted_score = base_score * weight
                    strategy_scores[strategy_name] = min(weighted_score, 1.0)
                except Exception as error:
                    print(f"❌ خطأ في تقييم استراتيجية {strategy_name}: {error}")
                    # ❌ لا نستخدم أي محاكاة أو قيم افتراضية
                    continue
            
            pattern_analysis = symbol_data.get('pattern_analysis')
            if pattern_analysis: 
                strategy_scores = await self.pattern_enhancer.enhance_strategy_with_patterns(
                    strategy_scores, pattern_analysis, symbol_data.get('symbol')
                )
            
            if base_scores:
                best_strategy = max(base_scores.items(), key=lambda x: x[1])
                best_strategy_name = best_strategy[0]
                best_strategy_score = best_strategy[1]
                symbol_data['recommended_strategy'] = best_strategy_name
                symbol_data['strategy_confidence'] = best_strategy_score
            
            return strategy_scores, base_scores
            
        except Exception as error:
            print(f"❌ خطأ في تقييم الاستراتيجيات: {error}")
            # ❌ لا نستخدم أي محاكاة
            return {}, {}
    
    async def get_default_weights(self):
        """الأوزان الافتراضية للاستراتيجيات - هذه ليست محاكاة ولكن أوزان ابتدائية"""
        return {
            'trend_following': 0.15, 
            'mean_reversion': 0.12,
            'breakout_momentum': 0.18, 
            'volume_spike': 0.10,
            'whale_tracking': 0.20, 
            'pattern_recognition': 0.15,
            'hybrid_ai': 0.10
        }
    
    async def _trend_following_strategy(self, symbol_data, market_context):
        """استراتيجية تتبع الاتجاه"""
        try:
            score = 0.0
            indicators = symbol_data.get('advanced_indicators', {})
            
            for timeframe in ['4h', '1h', '15m']:
                if timeframe in indicators:
                    timeframe_indicators = indicators[timeframe]
                    
                    if self._check_ema_alignment(timeframe_indicators): 
                        score += 0.20
                    
                    adx_value = timeframe_indicators.get('adx', 0)
                    if adx_value > 25: 
                        score += 0.15
                    
                    if (timeframe_indicators.get('ichimoku_conversion', 0) > 
                        timeframe_indicators.get('ichimoku_base', 0)):
                        score += 0.10
            
            return min(score, 1.0)
        except Exception as error:
            print(f"❌ خطأ في استراتيجية تتبع الاتجاه: {error}")
            return None  # ❌ لا نرجع قيمة افتراضية
    
    def _check_ema_alignment(self, indicators):
        """التحقق من محاذاة المتوسطات المتحركة"""
        required_emas = ['ema_9', 'ema_21', 'ema_50']
        if all(ema in indicators for ema in required_emas): 
            return (indicators['ema_9'] > indicators['ema_21'] > indicators['ema_50'])
        return False
    
    async def _mean_reversion_strategy(self, symbol_data, market_context):
        """استراتيجية العودة للمتوسط"""
        try:
            score = 0.0
            current_price = symbol_data['current_price']
            indicators = symbol_data.get('advanced_indicators', {})
            
            if '1h' in indicators:
                hourly_indicators = indicators['1h']
                
                if all(key in hourly_indicators for key in ['bb_upper', 'bb_lower', 'bb_middle']):
                    position_in_band = (current_price - hourly_indicators['bb_lower']) / (
                        hourly_indicators['bb_upper'] - hourly_indicators['bb_lower'])
                    
                    if position_in_band < 0.1 and hourly_indicators.get('rsi', 50) < 35: 
                        score += 0.45
                    if position_in_band > 0.9 and hourly_indicators.get('rsi', 50) > 65: 
                        score += 0.45
                
                rsi_value = hourly_indicators.get('rsi', 50)
                if rsi_value < 30: 
                    score += 0.35
                elif rsi_value > 70: 
                    score += 0.35
            
            return min(score, 1.0)
        except Exception as error:
            print(f"❌ خطأ في استراتيجية العودة للمتوسط: {error}")
            return None  # ❌ لا نرجع قيمة افتراضية
    
    async def _breakout_momentum_strategy(self, symbol_data, market_context):
        """استراتيجية زخم الاختراق"""
        try:
            score = 0.0
            indicators = symbol_data.get('advanced_indicators', {})
            
            for timeframe in ['1h', '15m', '5m']:
                if timeframe in indicators:
                    timeframe_indicators = indicators[timeframe]
                    
                    volume_ratio = timeframe_indicators.get('volume_ratio', 0)
                    if volume_ratio > 1.8: 
                        score += 0.25
                    elif volume_ratio > 1.3: 
                        score += 0.15
                    
                    if timeframe_indicators.get('macd_hist', 0) > 0: 
                        score += 0.20
                    
                    if 'vwap' in timeframe_indicators and symbol_data['current_price'] > timeframe_indicators['vwap']: 
                        score += 0.15
                    
                    rsi_value = timeframe_indicators.get('rsi', 50)
                    if 40 <= rsi_value <= 70: 
                        score += 0.10
            
            if score > 0.2: 
                score = max(score, 0.4)
            
            return min(score, 1.0)
        except Exception as error:
            print(f"❌ خطأ في استراتيجية زخم الاختراق: {error}")
            return None  # ❌ لا نرجع قيمة افتراضية
    
    async def _volume_spike_strategy(self, symbol_data, market_context):
        """استراتيجية ارتفاع الحجم"""
        try:
            score = 0.0
            indicators = symbol_data.get('advanced_indicators', {})
            
            for timeframe in ['1h', '15m', '5m']:
                if timeframe in indicators:
                    volume_ratio = indicators[timeframe].get('volume_ratio', 0)
                    if volume_ratio > 3.0: 
                        score += 0.45
                    elif volume_ratio > 2.0: 
                        score += 0.25
                    elif volume_ratio > 1.5: 
                        score += 0.15
            
            return min(score, 1.0)
        except Exception as error:
            print(f"❌ خطأ في استراتيجية ارتفاع الحجم: {error}")
            return None  # ❌ لا نرجع قيمة افتراضية
    
    async def _whale_tracking_strategy(self, symbol_data, market_context):
        """استراتيجية تتبع الحيتان"""
        try:
            whale_data = symbol_data.get('whale_data', {})
            if not whale_data.get('data_available', False):
                return None  # ❌ لا نرجع قيمة افتراضية
            
            whale_signal = await self.data_manager.get_whale_trading_signal(
                symbol_data['symbol'], whale_data, market_context
            )
            
            if whale_signal and whale_signal.get('action') != 'HOLD':
                confidence = whale_signal.get('confidence', 0)
                if whale_signal.get('action') in ['STRONG_BUY', 'BUY']:
                    return min(confidence * 1.2, 1.0)
                elif whale_signal.get('action') in ['STRONG_SELL', 'SELL']:
                    return min(confidence * 0.8, 1.0)
            
            return None  # ❌ لا نرجع قيمة افتراضية
        except Exception as error: 
            print(f"❌ خطأ في استراتيجية تتبع الحيتان: {error}")
            return None  # ❌ لا نرجع قيمة افتراضية
    
    async def _pattern_recognition_strategy(self, symbol_data, market_context):
        """استراتيجية التعرف على الأنماط"""
        try:
            score = 0.0
            pattern_analysis = symbol_data.get('pattern_analysis')
            
            if pattern_analysis and pattern_analysis.get('pattern_confidence', 0) > 0.6:
                score += pattern_analysis.get('pattern_confidence', 0) * 0.8
            else:
                indicators = symbol_data.get('advanced_indicators', {})
                for timeframe in ['4h', '1h']:
                    if timeframe in indicators:
                        timeframe_indicators = indicators[timeframe]
                        if (timeframe_indicators.get('rsi', 50) > 60 and 
                            timeframe_indicators.get('macd_hist', 0) > 0 and 
                            timeframe_indicators.get('volume_ratio', 0) > 1.5): 
                            score += 0.35
            
            return min(score, 1.0)
        except Exception as error:
            print(f"❌ خطأ في استراتيجية التعرف على الأنماط: {error}")
            return None  # ❌ لا نرجع قيمة افتراضية
    
    async def _hybrid_ai_strategy(self, symbol_data, market_context):
        """استراتيجية الهجين الذكية"""
        try:
            score = 0.0
            
            monte_carlo_probability = symbol_data.get('monte_carlo_probability')
            if monte_carlo_probability is not None:
                score += monte_carlo_probability * 0.4
            
            final_score = symbol_data.get('final_score', 0)
            if final_score > 0:
                score += final_score * 0.3
            
            if market_context.get('btc_sentiment') == 'BULLISH': 
                score += 0.15
            elif market_context.get('btc_sentiment') == 'BEARISH': 
                score -= 0.08
            
            pattern_analysis = symbol_data.get('pattern_analysis')
            if pattern_analysis and pattern_analysis.get('pattern_confidence', 0) > 0.6:
                pattern_bonus = pattern_analysis.get('pattern_confidence', 0) * 0.15
                score += pattern_bonus
            
            return max(0.0, min(score, 1.0))
        except Exception as error:
            print(f"❌ خطأ في استراتيجية الهجين الذكية: {error}")
            return None  # ❌ لا نرجع قيمة افتراضية

class MLProcessor:
    def __init__(self, market_context, data_manager, learning_engine):
        self.market_context = market_context
        self.data_manager = data_manager
        self.learning_engine = learning_engine
        self.technical_analyzer = AdvancedTechnicalAnalyzer()
        self.strategy_engine = MultiStrategyEngine(data_manager, learning_engine)
        self.monte_carlo_analyzer = MonteCarloAnalyzer()
        self.pattern_analyzer = ChartPatternAnalyzer()
    
    async def process_and_score_symbol_enhanced(self, raw_data):
        """المعالجة المحسنة للرموز مع كل التحليلات المتقدمة"""
        try:
            if not raw_data or not raw_data.get('ohlcv'): 
                print(f"❌ بيانات غير صالحة للرمز {raw_data.get('symbol', 'unknown')}")
                return None
            
            symbol = raw_data['symbol']
            print(f"🔍 معالجة الرمز {symbol} بالتحليلات المتقدمة...")
            
            base_analysis = await self.process_and_score_symbol(raw_data)
            if not base_analysis: 
                return None
            
            try:
                advanced_indicators = {}
                for timeframe, candles in raw_data['ohlcv'].items():
                    if candles and len(candles) >= 20:
                        dataframe = self._create_dataframe(candles)
                        indicators = self.technical_analyzer.calculate_all_indicators(dataframe, timeframe)
                        advanced_indicators[timeframe] = indicators
                
                base_analysis['advanced_indicators'] = advanced_indicators
                
                monte_carlo_probability = await self.monte_carlo_analyzer.predict_1h_probability(raw_data['ohlcv'])
                if monte_carlo_probability is not None:
                    base_analysis['monte_carlo_probability'] = monte_carlo_probability
                    base_analysis['monte_carlo_details'] = self.monte_carlo_analyzer.simulation_results
                
                pattern_analysis = await self.pattern_analyzer.detect_chart_patterns(raw_data['ohlcv'])
                base_analysis['pattern_analysis'] = pattern_analysis
                
                # جلب بيانات الحيتان للعملة
                whale_data = await self.data_manager.get_whale_data_for_symbol(symbol)
                if whale_data:
                    base_analysis['whale_data'] = whale_data
                
                strategy_scores, base_scores = await self.strategy_engine.evaluate_all_strategies(base_analysis, self.market_context)
                base_analysis['strategy_scores'] = strategy_scores
                base_analysis['base_strategy_scores'] = base_scores
                
                if base_scores:
                    best_strategy = max(base_scores.items(), key=lambda x: x[1])
                    best_strategy_name = best_strategy[0]
                    best_strategy_score = best_strategy[1]
                    base_analysis['recommended_strategy'] = best_strategy_name
                    base_analysis['strategy_confidence'] = best_strategy_score
                    
                    if best_strategy_score > 0.3: 
                        base_analysis['target_strategy'] = best_strategy_name
                    else: 
                        base_analysis['target_strategy'] = 'GENERIC'
                        
                    print(f"🎯 أفضل استراتيجية لـ {symbol}: {best_strategy_name} (ثقة: {best_strategy_score:.2f})")
                
                enhanced_score = self._calculate_enhanced_final_score(base_analysis)
                base_analysis['enhanced_final_score'] = enhanced_score
                
                print(f"✅ اكتمل التحليل المتقدم لـ {symbol}:")
                print(f"   📊 النهائي: {enhanced_score:.3f}")
                if monte_carlo_probability is not None:
                    print(f"   🎯 مونت كارلو: {monte_carlo_probability:.3f}")
                print(f"   🎯 نمط: {pattern_analysis.get('pattern_detected')} (ثقة: {pattern_analysis.get('pattern_confidence', 0):.2f})")
                if whale_data and whale_data.get('data_available'):
                    print(f"   🐋 حيتان: {whale_data.get('trading_signal', {}).get('action', 'HOLD')} (ثقة: {whale_data.get('trading_signal', {}).get('confidence', 0):.2f})")
                
                return base_analysis
                
            except Exception as strategy_error:
                print(f"❌ خطأ في التحليل المتقدم لـ {symbol}: {strategy_error}")
                return base_analysis
                
        except Exception as error:
            print(f"❌ خطأ في المعالجة المحسنة للرمز {raw_data.get('symbol', 'unknown')}: {error}")
            return await self.process_and_score_symbol(raw_data)
    
    def _create_dataframe(self, candles):
        """إنشاء DataFrame من بيانات الشموع مع DatetimeIndex مرتب"""
        try:
            df = pd.DataFrame(candles, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
            df[['open', 'high', 'low', 'close', 'volume']] = df[['open', 'high', 'low', 'close', 'volume']].astype(float)
            
            # تحويل timestamp إلى datetime وضبطه كـ index
            df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms')
            df.set_index('timestamp', inplace=True)
            
            # التأكد من أن الفهرس مرتب
            df.sort_index(inplace=True)
            
            return df
        except Exception as e:
            print(f"❌ خطأ في إنشاء DataFrame: {e}")
            return pd.DataFrame()
    
    def _calculate_enhanced_final_score(self, analysis):
        """حساب الدرجة النهائية المحسنة"""
        try:
            base_score = analysis.get('final_score', 0)
            monte_carlo_score = analysis.get('monte_carlo_probability', 0)
            pattern_confidence = analysis.get('pattern_analysis', {}).get('pattern_confidence', 0)
            strategy_confidence = analysis.get('strategy_confidence', 0)
            
            # استخدام فقط البيانات المتاحة
            components = []
            weights = []
            
            if base_score > 0:
                components.append(base_score)
                weights.append(0.25)
            
            if monte_carlo_score > 0:
                components.append(monte_carlo_score)
                weights.append(0.30)
            
            if pattern_confidence > 0:
                components.append(pattern_confidence)
                weights.append(0.25)
            
            if strategy_confidence > 0:
                components.append(strategy_confidence)
                weights.append(0.20)
            
            if not components:
                return 0  # ❌ لا توجد بيانات صالحة
            
            # حساب المتوسط المرجح
            total_weight = sum(weights)
            if total_weight == 0:
                return 0
                
            enhanced_score = sum(comp * weight for comp, weight in zip(components, weights)) / total_weight
            
            return min(enhanced_score, 1.0)
            
        except Exception as e:
            print(f"❌ خطأ في حساب الدرجة المحسنة: {e}")
            return analysis.get('final_score', 0)
    
    async def process_and_score_symbol(self, raw_data):
        """المعالجة الأساسية للرمز"""
        try:
            symbol = raw_data['symbol']
            ohlcv_data = raw_data['ohlcv']
            
            if not ohlcv_data: 
                return None
            
            current_price = raw_data.get('current_price', 0)
            layer1_score = raw_data.get('layer1_score', 0)
            reasons = raw_data.get('reasons_for_candidacy', [])
            
            final_score = layer1_score
            
            return {
                'symbol': symbol,
                'current_price': current_price,
                'final_score': final_score,
                'enhanced_final_score': final_score,
                'reasons_for_candidacy': reasons,
                'layer1_score': layer1_score
            }
            
        except Exception as error:
            print(f"❌ خطأ في المعالجة الأساسية للرمز {raw_data.get('symbol', 'unknown')}: {error}")
            return None
    
    def filter_top_candidates(self, candidates, number_of_candidates=10):
        """تصفية أفضل المرشحين"""
        valid_candidates = [candidate for candidate in candidates if candidate is not None]
        
        if not valid_candidates:
            print("❌ لا توجد مرشحات صالحة للتصفية")
            return []
        
        sorted_candidates = sorted(valid_candidates, 
                                 key=lambda candidate: candidate.get('enhanced_final_score', 0), 
                                 reverse=True)
        
        top_candidates = sorted_candidates[:number_of_candidates]
        
        print(f"🎖️ أفضل {len(top_candidates)} مرشح:")
        for i, candidate in enumerate(top_candidates):
            score = candidate.get('enhanced_final_score', 0)
            strategy = candidate.get('recommended_strategy', 'GENERIC')
            mc_score = candidate.get('monte_carlo_probability', 0)
            pattern = candidate.get('pattern_analysis', {}).get('pattern_detected', 'no_pattern')
            
            print(f"   {i+1}. {candidate['symbol']}:")
            print(f"      📊 النهائي: {score:.3f}")
            if mc_score > 0:
                print(f"      🎯 مونت كارلو: {mc_score:.3f}")
            print(f"      🎯 استراتيجية: {strategy} | نمط: {pattern}")
        
        return top_candidates

def safe_json_parse(json_string):
    """تحليل JSON آمن مع معالجة الأخطاء"""
    try:
        return json.loads(json_string)
    except json.JSONDecodeError as e:
        try:
            json_string = json_string.replace("'", '"')
            json_string = re.sub(r'(\w+):', r'"\1":', json_string)
            json_string = re.sub(r',\s*}', '}', json_string)
            json_string = re.sub(r',\s*]', ']', json_string)
            
            return json.loads(json_string)
        except json.JSONDecodeError:
            print(f"❌ فشل تحليل JSON بعد الإصلاح: {e}")
            return None


async def process_multiple_symbols_parallel(self, symbols_data_list, max_concurrent=20):
    """معالجة متعددة للرموز بشكل متوازي مع التحكم في التزامن"""
    try:
        print(f"🚀 بدء المعالجة المتوازية لـ {len(symbols_data_list)} رمز (بحد أقصى {max_concurrent} متزامنة)...")
        
        # تقسيم العمل إلى دفعات لتجنب الحمل الزائد
        batches = [symbols_data_list[i:i + max_concurrent] 
                  for i in range(0, len(symbols_data_list), max_concurrent)]
        
        all_results = []
        
        for batch_num, batch in enumerate(batches):
            print(f"   🔄 معالجة الدفعة {batch_num + 1}/{len(batches)} ({len(batch)} رمز)...")
            
            # إنشاء مهام للدفعة الحالية
            batch_tasks = []
            for symbol_data in batch:
                task = asyncio.create_task(self.process_and_score_symbol_enhanced(symbol_data))
                batch_tasks.append(task)
            
            # انتظار انتهاء الدفعة الحالية
            batch_results = await asyncio.gather(*batch_tasks, return_exceptions=True)
            
            # تصفية النتائج الناجحة
            successful_results = []
            for result in batch_results:
                if isinstance(result, Exception):
                    continue
                if result and result.get('enhanced_final_score', 0) > 0.4:
                    successful_results.append(result)
            
            all_results.extend(successful_results)
            print(f"   ✅ اكتملت الدفعة {batch_num + 1}: {len(successful_results)}/{len(batch)} ناجحة")
            
            # انتظار قصير بين الدفعات لتجنب rate limits
            if batch_num < len(batches) - 1:
                await asyncio.sleep(1)
        
        print(f"🎯 اكتملت المعالجة المتوازية: {len(all_results)}/{len(symbols_data_list)} رمز تم تحليلها بنجاح")
        return all_results
        
    except Exception as error:
        print(f"❌ خطأ في المعالجة المتوازية: {error}")
        return []

print("✅ ML Processor loaded - No Default Values & Enhanced Analysis")