Spaces:
Runtime error
Runtime error
Jordan Legg
commited on
Commit
Β·
86f0308
1
Parent(s):
448d742
remove projection layer and let x embedder handle it
Browse files
app.py
CHANGED
|
@@ -3,7 +3,6 @@ import gradio as gr
|
|
| 3 |
import numpy as np
|
| 4 |
import random
|
| 5 |
import torch
|
| 6 |
-
import torch.nn as nn
|
| 7 |
from PIL import Image
|
| 8 |
from torchvision import transforms
|
| 9 |
from diffusers import DiffusionPipeline
|
|
@@ -20,9 +19,6 @@ pipe.enable_model_cpu_offload()
|
|
| 20 |
pipe.vae.enable_slicing()
|
| 21 |
pipe.vae.enable_tiling()
|
| 22 |
|
| 23 |
-
# Add a projection layer to match x_embedder input
|
| 24 |
-
projection = nn.Linear(32 * 128 * 128, 64).to(device).to(dtype)
|
| 25 |
-
|
| 26 |
def preprocess_image(image, image_size):
|
| 27 |
preprocess = transforms.Compose([
|
| 28 |
transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.LANCZOS),
|
|
@@ -33,19 +29,18 @@ def preprocess_image(image, image_size):
|
|
| 33 |
return image
|
| 34 |
|
| 35 |
def process_latents(latents, height, width):
|
| 36 |
-
|
| 37 |
-
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear')
|
| 38 |
-
print(f"Latent shape after interpolation: {latents.shape}")
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
|
| 42 |
-
|
|
|
|
| 43 |
|
| 44 |
-
#
|
| 45 |
-
|
| 46 |
-
print(f"
|
| 47 |
|
| 48 |
-
return
|
| 49 |
|
| 50 |
@spaces.GPU()
|
| 51 |
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
|
@@ -76,6 +71,9 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
|
|
| 76 |
# Process latents to match x_embedder input
|
| 77 |
latents = process_latents(latents, height, width)
|
| 78 |
|
|
|
|
|
|
|
|
|
|
| 79 |
image = pipe(
|
| 80 |
prompt=prompt,
|
| 81 |
height=height,
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import random
|
| 5 |
import torch
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
from torchvision import transforms
|
| 8 |
from diffusers import DiffusionPipeline
|
|
|
|
| 19 |
pipe.vae.enable_slicing()
|
| 20 |
pipe.vae.enable_tiling()
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
def preprocess_image(image, image_size):
|
| 23 |
preprocess = transforms.Compose([
|
| 24 |
transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.LANCZOS),
|
|
|
|
| 29 |
return image
|
| 30 |
|
| 31 |
def process_latents(latents, height, width):
|
| 32 |
+
print(f"Input latent shape: {latents.shape}")
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
# Ensure latents are the correct shape
|
| 35 |
+
if latents.shape[2:] != (height // 8, width // 8):
|
| 36 |
+
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear')
|
| 37 |
+
print(f"Latent shape after potential interpolation: {latents.shape}")
|
| 38 |
|
| 39 |
+
# Reshape latents to [batch_size, seq_len, channels]
|
| 40 |
+
latents = latents.permute(0, 2, 3, 1).reshape(1, -1, latents.shape[1])
|
| 41 |
+
print(f"Reshaped latent shape: {latents.shape}")
|
| 42 |
|
| 43 |
+
return latents
|
| 44 |
|
| 45 |
@spaces.GPU()
|
| 46 |
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
| 71 |
# Process latents to match x_embedder input
|
| 72 |
latents = process_latents(latents, height, width)
|
| 73 |
|
| 74 |
+
print(f"x_embedder weight shape: {pipe.transformer.x_embedder.weight.shape}")
|
| 75 |
+
print(f"First transformer block input shape: {pipe.transformer.transformer_blocks[0].attn.to_q.weight.shape}")
|
| 76 |
+
|
| 77 |
image = pipe(
|
| 78 |
prompt=prompt,
|
| 79 |
height=height,
|