Spaces:
Running
on
Zero
Running
on
Zero
| import math | |
| from dataclasses import dataclass | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from diffusers import (FlowMatchEulerDiscreteScheduler, | |
| FlowMatchHeunDiscreteScheduler) | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.utils import BaseOutput, logging | |
| from diffusers.utils.torch_utils import randn_tensor | |
| class FlowMatchHeunDiscreteSchedulerOutput(BaseOutput): | |
| """ | |
| Output class for the scheduler's `step` function output. | |
| Args: | |
| prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
| denoising loop. | |
| """ | |
| prev_sample: torch.FloatTensor | |
| class FlowMatchEulerDiscreteBackwardScheduler(FlowMatchEulerDiscreteScheduler): | |
| def __init__( | |
| self, | |
| num_train_timesteps: int = 1000, | |
| shift: float = 1.0, | |
| use_dynamic_shifting=False, | |
| base_shift: Optional[float] = 0.5, | |
| max_shift: Optional[float] = 1.15, | |
| base_image_seq_len: Optional[int] = 256, | |
| max_image_seq_len: Optional[int] = 4096, | |
| margin_index_from_noise: int = 3, | |
| margin_index_from_image: int = 1, | |
| intermediate_steps=None | |
| ): | |
| super().__init__( | |
| num_train_timesteps=num_train_timesteps, | |
| shift=shift, | |
| use_dynamic_shifting=use_dynamic_shifting, | |
| base_shift=base_shift, | |
| max_shift=max_shift, | |
| base_image_seq_len=base_image_seq_len, | |
| max_image_seq_len=max_image_seq_len, | |
| ) | |
| self.margin_index_from_noise = margin_index_from_noise | |
| self.margin_index_from_image = margin_index_from_image | |
| self.intermediate_steps = intermediate_steps | |
| def set_timesteps( | |
| self, | |
| num_inference_steps: int = None, | |
| device: Union[str, torch.device] = None, | |
| sigmas: Optional[List[float]] = None, | |
| mu: Optional[float] = None, | |
| ): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
| Args: | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| """ | |
| if self.config.use_dynamic_shifting and mu is None: | |
| raise ValueError(" you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`") | |
| if sigmas is None: | |
| self.num_inference_steps = num_inference_steps | |
| timesteps = np.linspace( | |
| self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps | |
| ) | |
| sigmas = timesteps / self.config.num_train_timesteps | |
| if num_inference_steps is None: | |
| num_inference_steps = len(sigmas) | |
| if self.config.use_dynamic_shifting: | |
| sigmas = self.time_shift(mu, 1.0, sigmas) | |
| else: | |
| sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas) | |
| sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) | |
| timesteps = sigmas * self.config.num_train_timesteps | |
| self.timesteps = torch.cat([timesteps, torch.zeros(1, device=timesteps.device)]) | |
| self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) | |
| self.timesteps = self.timesteps.flip(0) | |
| self.sigmas = self.sigmas.flip(0) | |
| self.timesteps = self.timesteps[ | |
| self.config.margin_index_from_image : num_inference_steps - self.config.margin_index_from_noise | |
| ] | |
| self.sigmas = self.sigmas[ | |
| self.config.margin_index_from_image : num_inference_steps - self.config.margin_index_from_noise + 1 | |
| ] | |
| if self.config.intermediate_steps is not None: | |
| # self.timesteps = torch.linspace(self.timesteps[0], self.timesteps[-1], self.config.intermediate_steps).to(self.timesteps.device) | |
| self.sigmas = torch.linspace(self.sigmas[0], self.sigmas[-1], self.config.intermediate_steps + 1).to(self.timesteps.device) | |
| self.timesteps = self.sigmas[:-1] * 1000 | |
| self._step_index = None | |
| self._begin_index = None | |
| class FlowMatchEulerDiscreteForwardScheduler(FlowMatchEulerDiscreteScheduler): | |
| def __init__( | |
| self, | |
| num_train_timesteps: int = 1000, | |
| shift: float = 1.0, | |
| use_dynamic_shifting=False, | |
| base_shift: Optional[float] = 0.5, | |
| max_shift: Optional[float] = 1.15, | |
| base_image_seq_len: Optional[int] = 256, | |
| max_image_seq_len: Optional[int] = 4096, | |
| margin_index_from_noise: int = 3, | |
| margin_index_from_image: int = 0, | |
| ): | |
| super().__init__( | |
| num_train_timesteps=num_train_timesteps, | |
| shift=shift, | |
| use_dynamic_shifting=use_dynamic_shifting, | |
| base_shift=base_shift, | |
| max_shift=max_shift, | |
| base_image_seq_len=base_image_seq_len, | |
| max_image_seq_len=max_image_seq_len, | |
| ) | |
| self.margin_index_from_noise = margin_index_from_noise | |
| self.margin_index_from_image = margin_index_from_image | |
| def set_timesteps( | |
| self, | |
| num_inference_steps: int = None, | |
| device: Union[str, torch.device] = None, | |
| sigmas: Optional[List[float]] = None, | |
| mu: Optional[float] = None, | |
| ): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
| Args: | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| """ | |
| if self.config.use_dynamic_shifting and mu is None: | |
| raise ValueError(" you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`") | |
| if sigmas is None: | |
| self.num_inference_steps = num_inference_steps | |
| timesteps = np.linspace( | |
| self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps | |
| ) | |
| sigmas = timesteps / self.config.num_train_timesteps | |
| if num_inference_steps is None: | |
| num_inference_steps = len(sigmas) | |
| if self.config.use_dynamic_shifting: | |
| sigmas = self.time_shift(mu, 1.0, sigmas) | |
| else: | |
| sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas) | |
| sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) | |
| timesteps = sigmas * self.config.num_train_timesteps | |
| self.timesteps = timesteps.to(device=device) | |
| self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) | |
| self.timesteps = self.timesteps[ | |
| self.config.margin_index_from_noise : num_inference_steps - self.config.margin_index_from_image | |
| ] | |
| self.sigmas = self.sigmas[ | |
| self.config.margin_index_from_noise : num_inference_steps - self.config.margin_index_from_image + 1 | |
| ] | |
| self._step_index = None | |
| self._begin_index = None | |
| class FlowMatchHeunDiscreteForwardScheduler(FlowMatchHeunDiscreteScheduler): | |
| _compatibles = [] | |
| order = 2 | |
| def __init__( | |
| self, | |
| num_train_timesteps: int = 1000, | |
| shift: float = 1.0, | |
| margin_index: int = 0, | |
| use_dynamic_shifting = False | |
| ): | |
| timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy() | |
| timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) | |
| sigmas = timesteps / num_train_timesteps | |
| sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) | |
| self.timesteps = sigmas * num_train_timesteps | |
| self._step_index = None | |
| self._begin_index = None | |
| self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
| self.sigma_min = self.sigmas[-1].item() | |
| self.sigma_max = self.sigmas[0].item() | |
| self.use_dynamic_shifting = use_dynamic_shifting | |
| self.margin_index = margin_index | |
| def time_shift(self, mu: float, sigma: float, t: torch.Tensor): | |
| return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) | |
| def set_timesteps( | |
| self, | |
| num_inference_steps: int = None, | |
| device: Union[str, torch.device] = None, | |
| sigmas: Optional[List[float]] = None, | |
| mu: Optional[float] = None, | |
| ): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
| Args: | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| """ | |
| if sigmas is None: | |
| self.num_inference_steps = num_inference_steps | |
| timesteps = np.linspace( | |
| self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps | |
| ) | |
| sigmas = timesteps / self.config.num_train_timesteps | |
| if self.config.use_dynamic_shifting: | |
| sigmas = self.time_shift(mu, 1.0, sigmas) | |
| else: | |
| sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas) | |
| sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) | |
| timesteps = sigmas * self.config.num_train_timesteps | |
| timesteps = timesteps[self.config.margin_index:] | |
| timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)]) | |
| self.timesteps = timesteps.to(device=device) | |
| sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) | |
| sigmas = sigmas[self.config.margin_index:] | |
| self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]]) | |
| # empty dt and derivative | |
| self.prev_derivative = None | |
| self.dt = None | |
| self._step_index = None | |
| self._begin_index = None | |
| def step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: Union[float, torch.FloatTensor], | |
| sample: torch.FloatTensor, | |
| s_churn: float = 0.0, | |
| s_tmin: float = 0.0, | |
| s_tmax: float = float("inf"), | |
| s_noise: float = 1.0, | |
| generator: Optional[torch.Generator] = None, | |
| return_dict: bool = True, | |
| ) -> Union[FlowMatchHeunDiscreteSchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.FloatTensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`float`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| A current instance of a sample created by the diffusion process. | |
| s_churn (`float`): | |
| s_tmin (`float`): | |
| s_tmax (`float`): | |
| s_noise (`float`, defaults to 1.0): | |
| Scaling factor for noise added to the sample. | |
| generator (`torch.Generator`, *optional*): | |
| A random number generator. | |
| return_dict (`bool`): | |
| Whether or not to return a [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] or | |
| tuple. | |
| Returns: | |
| [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] is | |
| returned, otherwise a tuple is returned where the first element is the sample tensor. | |
| """ | |
| if ( | |
| isinstance(timestep, int) | |
| or isinstance(timestep, torch.IntTensor) | |
| or isinstance(timestep, torch.LongTensor) | |
| ): | |
| raise ValueError( | |
| ( | |
| "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" | |
| " `HeunDiscreteScheduler.step()` is not supported. Make sure to pass" | |
| " one of the `scheduler.timesteps` as a timestep." | |
| ), | |
| ) | |
| if self.step_index is None: | |
| self._init_step_index(timestep) | |
| # Upcast to avoid precision issues when computing prev_sample | |
| sample = sample.to(torch.float32) | |
| if self.state_in_first_order: | |
| sigma = self.sigmas[self.step_index] | |
| sigma_next = self.sigmas[self.step_index + 1] | |
| else: | |
| # 2nd order / Heun's method | |
| sigma = self.sigmas[self.step_index - 1] | |
| sigma_next = self.sigmas[self.step_index] | |
| gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 | |
| noise = randn_tensor( | |
| model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator | |
| ) | |
| eps = noise * s_noise | |
| sigma_hat = sigma * (gamma + 1) | |
| if gamma > 0: | |
| sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 | |
| if self.state_in_first_order: | |
| # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | |
| denoised = sample - model_output * sigma | |
| # 2. convert to an ODE derivative for 1st order | |
| derivative = (sample - denoised) / sigma_hat | |
| # 3. Delta timestep | |
| dt = sigma_next - sigma_hat | |
| # store for 2nd order step | |
| self.prev_derivative = derivative | |
| self.dt = dt | |
| self.sample = sample | |
| else: | |
| # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | |
| denoised = sample - model_output * sigma_next | |
| # 2. 2nd order / Heun's method | |
| derivative = (sample - denoised) / sigma_next | |
| derivative = 0.5 * (self.prev_derivative + derivative) | |
| # 3. take prev timestep & sample | |
| dt = self.dt | |
| sample = self.sample | |
| # free dt and derivative | |
| # Note, this puts the scheduler in "first order mode" | |
| self.prev_derivative = None | |
| self.dt = None | |
| self.sample = None | |
| prev_sample = sample + derivative * dt | |
| # Cast sample back to model compatible dtype | |
| prev_sample = prev_sample.to(model_output.dtype) | |
| # upon completion increase step index by one | |
| self._step_index += 1 | |
| if not return_dict: | |
| return (prev_sample,) | |
| return prev_sample | |
| class FlowMatchHeunDiscreteBackwardScheduler(FlowMatchHeunDiscreteScheduler): | |
| _compatibles = [] | |
| order = 2 | |
| def __init__( | |
| self, | |
| num_train_timesteps: int = 1000, | |
| shift: float = 1.0, | |
| margin_index: int = 0, | |
| use_dynamic_shifting = False | |
| ): | |
| timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy() | |
| timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) | |
| sigmas = timesteps / num_train_timesteps | |
| sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) | |
| self.timesteps = sigmas * num_train_timesteps | |
| self._step_index = None | |
| self._begin_index = None | |
| self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
| self.sigma_min = self.sigmas[-1].item() | |
| self.sigma_max = self.sigmas[0].item() | |
| self.use_dynamic_shifting = use_dynamic_shifting | |
| self.margin_index = margin_index | |
| def time_shift(self, mu: float, sigma: float, t: torch.Tensor): | |
| return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) | |
| def set_timesteps( | |
| self, | |
| num_inference_steps: int = None, | |
| device: Union[str, torch.device] = None, | |
| sigmas: Optional[List[float]] = None, | |
| mu: Optional[float] = None, | |
| ): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
| Args: | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| """ | |
| if sigmas is None: | |
| self.num_inference_steps = num_inference_steps | |
| timesteps = np.linspace( | |
| self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps | |
| ) | |
| sigmas = timesteps / self.config.num_train_timesteps | |
| if self.config.use_dynamic_shifting: | |
| sigmas = self.time_shift(mu, 1.0, sigmas) | |
| else: | |
| sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas) | |
| sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) | |
| timesteps = sigmas * self.config.num_train_timesteps | |
| timesteps = timesteps[self.config.margin_index:].flip(0) | |
| timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)]) | |
| self.timesteps = timesteps.to(device=device) | |
| sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) | |
| sigmas = sigmas[self.config.margin_index:].flip(0) | |
| self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]]) | |
| # empty dt and derivative | |
| self.prev_derivative = None | |
| self.dt = None | |
| self._step_index = None | |
| self._begin_index = None | |
| def step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: Union[float, torch.FloatTensor], | |
| sample: torch.FloatTensor, | |
| s_churn: float = 0.0, | |
| s_tmin: float = 0.0, | |
| s_tmax: float = float("inf"), | |
| s_noise: float = 1.0, | |
| generator: Optional[torch.Generator] = None, | |
| return_dict: bool = True, | |
| ) -> Union[FlowMatchHeunDiscreteSchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.FloatTensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`float`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| A current instance of a sample created by the diffusion process. | |
| s_churn (`float`): | |
| s_tmin (`float`): | |
| s_tmax (`float`): | |
| s_noise (`float`, defaults to 1.0): | |
| Scaling factor for noise added to the sample. | |
| generator (`torch.Generator`, *optional*): | |
| A random number generator. | |
| return_dict (`bool`): | |
| Whether or not to return a [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] or | |
| tuple. | |
| Returns: | |
| [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] is | |
| returned, otherwise a tuple is returned where the first element is the sample tensor. | |
| """ | |
| if ( | |
| isinstance(timestep, int) | |
| or isinstance(timestep, torch.IntTensor) | |
| or isinstance(timestep, torch.LongTensor) | |
| ): | |
| raise ValueError( | |
| ( | |
| "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" | |
| " `HeunDiscreteScheduler.step()` is not supported. Make sure to pass" | |
| " one of the `scheduler.timesteps` as a timestep." | |
| ), | |
| ) | |
| if self.step_index is None: | |
| self._init_step_index(timestep) | |
| # Upcast to avoid precision issues when computing prev_sample | |
| sample = sample.to(torch.float32) | |
| if self.state_in_first_order: | |
| sigma = self.sigmas[self.step_index] | |
| sigma_next = self.sigmas[self.step_index + 1] | |
| else: | |
| # 2nd order / Heun's method | |
| sigma = self.sigmas[self.step_index - 1] | |
| sigma_next = self.sigmas[self.step_index] | |
| if sigma == 0: | |
| prev_sample = sample + (sigma_next - sigma) * model_output | |
| prev_sample = prev_sample.to(model_output.dtype) | |
| # upon completion increase step index by one | |
| self._step_index += 2 | |
| if not return_dict: | |
| return (prev_sample,) | |
| return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample) | |
| gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 | |
| noise = randn_tensor( | |
| model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator | |
| ) | |
| eps = noise * s_noise | |
| sigma_hat = sigma * (gamma + 1) | |
| if gamma > 0: | |
| sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 | |
| if self.state_in_first_order: | |
| # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | |
| denoised = sample - model_output * sigma | |
| # 2. convert to an ODE derivative for 1st order | |
| derivative = (sample - denoised) / sigma_hat | |
| # 3. Delta timestep | |
| dt = sigma_next - sigma_hat | |
| # store for 2nd order step | |
| self.prev_derivative = derivative | |
| self.dt = dt | |
| self.sample = sample | |
| else: | |
| # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | |
| denoised = sample - model_output * sigma_next | |
| # 2. 2nd order / Heun's method | |
| derivative = (sample - denoised) / sigma_next | |
| derivative = 0.5 * (self.prev_derivative + derivative) | |
| # 3. take prev timestep & sample | |
| dt = self.dt | |
| sample = self.sample | |
| # free dt and derivative | |
| # Note, this puts the scheduler in "first order mode" | |
| self.prev_derivative = None | |
| self.dt = None | |
| self.sample = None | |
| prev_sample = sample + derivative * dt | |
| # Cast sample back to model compatible dtype | |
| prev_sample = prev_sample.to(model_output.dtype) | |
| # upon completion increase step index by one | |
| self._step_index += 1 | |
| if not return_dict: | |
| return (prev_sample,) | |
| return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample) |