File size: 30,767 Bytes
e8b46b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
import json
from docx import Document
from docx.shared import RGBColor
import re

def load_json(filepath):
    with open(filepath, 'r') as file:
        return json.load(file)

def flatten_json(y, prefix=''):
    out = {}
    for key, val in y.items():
        new_key = f"{prefix}.{key}" if prefix else key
        if isinstance(val, dict):
            out.update(flatten_json(val, new_key))
        else:
            out[new_key] = val
            out[key] = val
    return out

def is_red(run):
    color = run.font.color
    return color and (color.rgb == RGBColor(255, 0, 0) or getattr(color, "theme_color", None) == 1)

def get_value_as_string(value, field_name=""):
    if isinstance(value, list):
        if len(value) == 0:
            return ""
        elif len(value) == 1:
            return str(value[0])
        else:
            if "australian company number" in field_name.lower() or "company number" in field_name.lower():
                return value
            else:
                return " ".join(str(v) for v in value)
    else:
        return str(value)

def find_matching_json_value(field_name, flat_json):
    """Find matching JSON value based on field name (key)"""
    field_name = field_name.strip()
    
    # Manual mapping for specific sections that need special handling
    manual_mappings = {
        "attendance list name and position title": "Attendance List (Names and Position Titles).Attendance List (Names and Position Titles)",
        "attendance list (names and position titles)": "Attendance List (Names and Position Titles).Attendance List (Names and Position Titles)",
        "nature of the operators business (summary)": "Nature of the Operators Business (Summary).Nature of the Operators Business (Summary)",
        "nature of the operators business (summary):": "Nature of the Operators Business (Summary).Nature of the Operators Business (Summary)",
        "nature of operators business (summary)": "Nature of the Operators Business (Summary).Nature of the Operators Business (Summary)",
        "nature of operators business (summary):": "Nature of the Operators Business (Summary).Nature of the Operators Business (Summary)",
        # Paragraph-level mappings
        "mass management": "paragraphs.MASS MANAGEMENT",
        "liam herbig": "paragraphs.MASS MANAGEMENT",  # Name should be replaced with company name
        "date": "paragraphs.This management system I have audited when followed will ensure compliance with the relevant NHVAS Business Rules & Standards.",
        # Date-related mappings
        "13.11.2024": "paragraphs.This management system I have audited when followed will ensure compliance with the relevant NHVAS Business Rules & Standards.",
        "auditor signature": "paragraphs.This management system I have audited when followed will ensure compliance with the relevant NHVAS Business Rules & Standards.",
        "operator signature": "paragraphs.I hereby consent to information relating to my Accreditation to be shared with other law enforcement agencies, including a service provider authorised under the Heavy Vehicle National Law.",
        # Specific data mappings
        "jodie jones": "Audit Information.Auditor name",
        "13th november 2024": "Audit Information.Date of Audit",
        "adelaide barossa transport & warehousing pty ltd": "Operator Information.Operator name (Legal entity)",
        "manager": "Operator Information.Operator name (Legal entity)",  # Replace manager title with company name
        "liam herbig –manager": "Operator Information.Operator name (Legal entity)",
        "liam herbig – manager": "Operator Information.Operator name (Legal entity)",
        "deborah herbig – manager": "Operator Information.Operator name (Legal entity)",
        # Contact information mappings (old data in red text -> new data from JSON)
        "141 sitz road callington sa 5254": "Operator Information.Operator business address",  # Replace old address with new
        "po box 743 mt barker sa": "Operator Information.Operator Postal address",  # Replace old postal with new
        "debherbig@bigpond.com": "Operator Information.Email address",  # Replace old email with new
        "0447 710 602": "Operator Information.Operator Telephone Number",  # Replace old phone with new
        # Manual/Version mappings (old version -> new version)
        "mahlo 092021v1": "Operator Information.NHVAS Manual (Policies and Procedures) developed by",  # Replace old manual with new
        # These should stay as they are (no replacement needed, just different format)
        "511840": "Operator Information.NHVAS Accreditation No. (If applicable)",  # Keep accreditation number
        "26th october 2023": "Audit Information.Date of Audit",  # Use audit date instead
        # Std 5 and Std 6 mappings
        "the latest verification was dated 23rdnovember 2022": "Mass Management Summary of Audit findings.Std 5. Verification",
        "the latest verification was dated 23rd november 2022": "Mass Management Summary of Audit findings.Std 5. Verification",
        "internal review was dated 23rd august 2023 with 0 ncr": "Mass Management Summary of Audit findings.Std 6. Internal Review",
        "23rd august2023 with 0 trips, 0 trips using mass, 0 overloads and 0 ncr's": "Mass Management Summary of Audit findings.Std 6. Internal Review",
        "23rd august 2023 with 0 trips, 0 trips using mass, 0 overloads and 0 ncr's": "Mass Management Summary of Audit findings.Std 6. Internal Review",
    }
    
    # Check manual mappings first
    normalized_field = field_name.lower().strip()
    if normalized_field in manual_mappings:
        mapped_key = manual_mappings[normalized_field]
        if mapped_key in flat_json:
            print(f"    βœ… Manual mapping found for '{field_name}' -> '{mapped_key}'")
            return flat_json[mapped_key]
    
    # Try exact match first
    if field_name in flat_json:
        print(f"    Direct match found for key '{field_name}'")
        return flat_json[field_name]
    
    # Try case-insensitive exact match
    for key, value in flat_json.items():
        if key.lower() == field_name.lower():
            print(f"    Case-insensitive match found for key '{field_name}' with JSON key '{key}'")
            return value
    
    # Try to find a key that ends with this field name
    for key, value in flat_json.items():
        if key.endswith('.' + field_name):
            print(f"    Suffix match found for key '{field_name}' with JSON key '{key}'")
            return value
    
    # Try partial matching for fields with parentheses or additional text
    clean_field = re.sub(r'\s*\([^)]*\)', '', field_name).strip()  # Remove parentheses content
    for key, value in flat_json.items():
        clean_key = re.sub(r'\s*\([^)]*\)', '', key).strip()
        if clean_field.lower() == clean_key.lower():
            print(f"    Clean match found for key '{field_name}' with JSON key '{key}'")
            return value
    
    # Try word-based matching - more flexible approach
    field_words = set(word.lower() for word in re.findall(r'\b\w+\b', field_name) if len(word) > 2)
    best_match = None
    best_score = 0
    
    for key, value in flat_json.items():
        key_words = set(word.lower() for word in re.findall(r'\b\w+\b', key) if len(word) > 2)
        # Calculate how many words match
        common_words = field_words.intersection(key_words)
        if common_words:
            score = len(common_words) / max(len(field_words), len(key_words))  # Normalized score
            if score > best_score:
                best_score = score
                best_match = (key, value)
    
    if best_match and best_score >= 0.5:  # At least 50% word overlap
        print(f"    Word-based match found for key '{field_name}' with JSON key '{best_match[0]}' (score: {best_score:.2f})")
        return best_match[1]
    
    # No match found
    print(f"    ❌ No match found for '{field_name}'")
    return None

def get_clean_text(cell):
    text = ""
    for paragraph in cell.paragraphs:
        for run in paragraph.runs:
            text += run.text
    return text.strip()

def has_red_text(cell):
    for paragraph in cell.paragraphs:
        for run in paragraph.runs:
            if is_red(run) and run.text.strip():
                return True
    return False

def replace_red_text_in_cell(cell, replacement_text):
    replacements_made = 0
    
    # First, collect all red text to show what we're replacing
    all_red_text = ""
    for paragraph in cell.paragraphs:
        for run in paragraph.runs:
            if is_red(run):
                all_red_text += run.text
    
    if all_red_text.strip():
        print(f"      βœ… Replacing red text: '{all_red_text[:50]}...' β†’ '{replacement_text[:50]}...'")
    
    # Now replace all red text in the cell with the replacement text
    first_replacement_done = False
    for paragraph in cell.paragraphs:
        red_runs = [run for run in paragraph.runs if is_red(run)]
        if red_runs:
            if not first_replacement_done:
                # Replace the first red run with our text
                red_runs[0].text = replacement_text
                red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
                first_replacement_done = True
                replacements_made = 1
            else:
                # Clear the first red run since we already replaced content
                red_runs[0].text = ''
            
            # Clear all other red runs in this paragraph
            for run in red_runs[1:]:
                run.text = ''
    
    return replacements_made

def handle_australian_company_number(row, company_numbers):
    replacements_made = 0
    for i, digit in enumerate(company_numbers):
        cell_idx = i + 1
        if cell_idx < len(row.cells):
            cell = row.cells[cell_idx]
            if has_red_text(cell):
                cell_replacements = replace_red_text_in_cell(cell, str(digit))
                replacements_made += cell_replacements
                print(f"      -> Placed digit '{digit}' in cell {cell_idx + 1}")
    return replacements_made

def handle_vehicle_registration_table(table, flat_json):
    """Handle the Vehicle Registration Numbers table with column-based data"""
    replacements_made = 0
    
    # Look for the vehicle registration data in the flattened JSON
    vehicle_section = None
    
    # Try to find the vehicle registration section
    for key, value in flat_json.items():
        if "vehicle registration numbers of records examined" in key.lower():
            if isinstance(value, dict):  # This should be the nested structure
                vehicle_section = value
                print(f"    βœ… Found vehicle data in key: '{key}'")
                break
    
    if not vehicle_section:
        # Try alternative approach - look for individual column keys
        potential_columns = {}
        for key, value in flat_json.items():
            if any(col_name in key.lower() for col_name in ["registration number", "sub-contractor", "weight verification", "rfs suspension"]):
                # Extract the column name from the flattened key
                if "." in key:
                    column_name = key.split(".")[-1]
                else:
                    column_name = key
                potential_columns[column_name] = value
        
        if potential_columns:
            vehicle_section = potential_columns
            print(f"    βœ… Found vehicle data from flattened keys: {list(vehicle_section.keys())}")
        else:
            print(f"    ❌ Vehicle registration data not found in JSON")
            return 0
    
    print(f"    βœ… Found vehicle registration data with {len(vehicle_section)} columns")
    
    # Find header row (usually row 0 or 1)
    header_row_idx = -1
    header_row = None
    
    for row_idx, row in enumerate(table.rows):
        row_text = "".join(get_clean_text(cell).lower() for cell in row.cells)
        if "registration" in row_text and "number" in row_text:
            header_row_idx = row_idx
            header_row = row
            break
    
    if header_row_idx == -1:
        print(f"    ❌ Could not find header row in vehicle table")
        return 0
    
    print(f"    βœ… Found header row at index {header_row_idx}")
    
    # Create mapping between column indices and JSON keys
    column_mapping = {}
    for col_idx, cell in enumerate(header_row.cells):
        header_text = get_clean_text(cell).strip()
        if not header_text or header_text.lower() == "no.":
            continue
            
        # Try to match header text with JSON keys
        best_match = None
        best_score = 0
        
        # Normalize header text for better matching
        normalized_header = header_text.lower().replace("(", " (").replace(")", ") ").strip()
        
        for json_key in vehicle_section.keys():
            normalized_json = json_key.lower().strip()
            
            # Try exact match first (after normalization)
            if normalized_header == normalized_json:
                best_match = json_key
                best_score = 1.0
                break
            
            # Try word-based matching
            header_words = set(word.lower() for word in normalized_header.split() if len(word) > 2)
            json_words = set(word.lower() for word in normalized_json.split() if len(word) > 2)
            
            if header_words and json_words:
                common_words = header_words.intersection(json_words)
                score = len(common_words) / max(len(header_words), len(json_words))
                
                if score > best_score and score >= 0.3:  # At least 30% match
                    best_score = score
                    best_match = json_key
            
            # Try substring matching for cases like "RegistrationNumber" vs "Registration Number"
            header_clean = normalized_header.replace(" ", "").replace("-", "").replace("(", "").replace(")", "")
            json_clean = normalized_json.replace(" ", "").replace("-", "").replace("(", "").replace(")", "")
            
            if header_clean in json_clean or json_clean in header_clean:
                if len(header_clean) > 5 and len(json_clean) > 5:  # Only for meaningful matches
                    substring_score = min(len(header_clean), len(json_clean)) / max(len(header_clean), len(json_clean))
                    if substring_score > best_score and substring_score >= 0.6:
                        best_score = substring_score
                        best_match = json_key
        
        if best_match:
            column_mapping[col_idx] = best_match
            print(f"      πŸ“Œ Column {col_idx + 1} ('{header_text}') -> '{best_match}' (score: {best_score:.2f})")
    
    if not column_mapping:
        print(f"    ❌ No column mappings found")
        return 0
    
    # Determine how many data rows we need based on the JSON arrays
    max_data_rows = 0
    for json_key, data in vehicle_section.items():
        if isinstance(data, list):
            max_data_rows = max(max_data_rows, len(data))
    
    print(f"    πŸ“Œ Need to populate {max_data_rows} data rows")
    
    # Process all required data rows
    for data_row_index in range(max_data_rows):
        table_row_idx = header_row_idx + 1 + data_row_index
        
        # Check if this table row exists, if not, add it
        if table_row_idx >= len(table.rows):
            print(f"    ⚠️ Row {table_row_idx + 1} doesn't exist - table only has {len(table.rows)} rows")
            print(f"    βž• Adding new row for vehicle {data_row_index + 1}")
            
            # Add a new row to the table
            new_row = table.add_row()
            print(f"    βœ… Successfully added row {len(table.rows)} to the table")
            
        row = table.rows[table_row_idx]
        print(f"    πŸ“Œ Processing data row {table_row_idx + 1} (vehicle {data_row_index + 1})")
        
        # Fill in data for each mapped column
        for col_idx, json_key in column_mapping.items():
            if col_idx < len(row.cells):
                cell = row.cells[col_idx]
                
                # Get the data for this column and row
                column_data = vehicle_section.get(json_key, [])
                if isinstance(column_data, list) and data_row_index < len(column_data):
                    replacement_value = str(column_data[data_row_index])
                    
                    # Check if cell has red text or is empty (needs data)
                    cell_text = get_clean_text(cell)
                    if has_red_text(cell) or not cell_text.strip():
                        # If cell is empty, add the text directly
                        if not cell_text.strip():
                            cell.text = replacement_value
                            replacements_made += 1
                            print(f"      -> Added '{replacement_value}' to empty cell (column '{json_key}')")
                        else:
                            # If cell has red text, replace it
                            cell_replacements = replace_red_text_in_cell(cell, replacement_value)
                            replacements_made += cell_replacements
                            if cell_replacements > 0:
                                print(f"      -> Replaced red text with '{replacement_value}' (column '{json_key}')")
    
    return replacements_made

def handle_print_accreditation_section(table, flat_json):
    """Handle the special case of print accreditation name with 2 values"""
    replacements_made = 0
    
    # Look for the print accreditation name data
    print_data = flat_json.get("print accreditation name.print accreditation name", [])
    if not isinstance(print_data, list) or len(print_data) < 2:
        return 0
    
    name_value = print_data[0]  # "Simon Anderson"
    position_value = print_data[1]  # "Director"
    
    print(f"    πŸ“‹ Print accreditation data: Name='{name_value}', Position='{position_value}'")
    
    # Find rows with "Print Name" and "Position Title"
    for row_idx, row in enumerate(table.rows):
        if len(row.cells) >= 2:
            # Check if this row has the headers
            cell1_text = get_clean_text(row.cells[0]).lower()
            cell2_text = get_clean_text(row.cells[1]).lower()
            
            if "print name" in cell1_text and "position title" in cell2_text:
                print(f"    πŸ“ Found header row {row_idx + 1}: '{cell1_text}' | '{cell2_text}'")
                
                # Check the next row for red text to replace
                if row_idx + 1 < len(table.rows):
                    data_row = table.rows[row_idx + 1]
                    if len(data_row.cells) >= 2:
                        # Replace Print Name (first cell)
                        if has_red_text(data_row.cells[0]):
                            cell_replacements = replace_red_text_in_cell(data_row.cells[0], name_value)
                            replacements_made += cell_replacements
                            if cell_replacements > 0:
                                print(f"      βœ… Replaced Print Name: '{name_value}'")
                        
                        # Replace Position Title (second cell)  
                        if has_red_text(data_row.cells[1]):
                            cell_replacements = replace_red_text_in_cell(data_row.cells[1], position_value)
                            replacements_made += cell_replacements
                            if cell_replacements > 0:
                                print(f"      βœ… Replaced Position Title: '{position_value}'")
                
                break  # Found the section, no need to continue
    
    return replacements_made

def process_single_column_sections(cell, field_name, flat_json):
    json_value = find_matching_json_value(field_name, flat_json)
    if json_value is not None:
        replacement_text = get_value_as_string(json_value, field_name)
        if isinstance(json_value, list) and len(json_value) > 1:
            replacement_text = "\n".join(str(item) for item in json_value)
        if has_red_text(cell):
            print(f"    βœ… Replacing red text in single-column section: '{field_name}'")
            print(f"    βœ… Replacement text:\n{replacement_text}")
            cell_replacements = replace_red_text_in_cell(cell, replacement_text)
            if cell_replacements > 0:
                print(f"    -> Replaced with: '{replacement_text[:100]}...'")
                return cell_replacements
    return 0

def process_tables(document, flat_json):
    """Process tables to find key-value pairs and replace red values"""
    replacements_made = 0
    
    for table_idx, table in enumerate(document.tables):
        print(f"\nπŸ” Processing table {table_idx + 1}:")
        
        # Check if this is the vehicle registration table
        table_text = ""
        for row in table.rows[:3]:  # Check first 3 rows
            for cell in row.cells:
                table_text += get_clean_text(cell).lower() + " "
        
        # Look for vehicle registration indicators (need multiple indicators to avoid false positives)
        vehicle_indicators = ["registration number", "sub-contractor", "weight verification", "rfs suspension"]
        indicator_count = sum(1 for indicator in vehicle_indicators if indicator in table_text)
        if indicator_count >= 3:  # Require at least 3 indicators to be sure it's a vehicle table
            print(f"    πŸš— Detected Vehicle Registration table")
            vehicle_replacements = handle_vehicle_registration_table(table, flat_json)
            replacements_made += vehicle_replacements
            continue  # Skip normal processing for this table
        
        # Check if this is the print accreditation table
        print_accreditation_indicators = ["print name", "position title"]
        indicator_count = sum(1 for indicator in print_accreditation_indicators if indicator in table_text)
        if indicator_count >= 2:  # Require at least 2 indicators to be sure it's a print accreditation table
            print(f"    πŸ“‹ Detected Print Accreditation table")
            print_accreditation_replacements = handle_print_accreditation_section(table, flat_json)
            replacements_made += print_accreditation_replacements
            continue  # Skip normal processing for this table
        
        for row_idx, row in enumerate(table.rows):
            if len(row.cells) < 1:  # Skip empty rows
                continue
                
            # Get the key from the first column
            key_cell = row.cells[0]
            key_text = get_clean_text(key_cell)
            
            if not key_text:
                continue
            
            print(f"  πŸ“Œ Row {row_idx + 1}: Key = '{key_text}'")
            
            # Check if this key exists in our JSON
            json_value = find_matching_json_value(key_text, flat_json)
            
            if json_value is not None:
                replacement_text = get_value_as_string(json_value, key_text)
                
                # Special handling for Australian Company Number
                if ("australian company number" in key_text.lower() or "company number" in key_text.lower()) and isinstance(json_value, list):
                    cell_replacements = handle_australian_company_number(row, json_value)
                    replacements_made += cell_replacements
                    
                # Handle section headers (like Attendance List, Nature of Business) where content is in next row
                elif ("attendance list" in key_text.lower() or "nature of" in key_text.lower()) and row_idx + 1 < len(table.rows):
                    print(f"    βœ… Section header detected, checking next row for content...")
                    next_row = table.rows[row_idx + 1]
                    
                    # Check all cells in the next row for red text
                    for cell_idx, cell in enumerate(next_row.cells):
                        if has_red_text(cell):
                            print(f"    βœ… Found red text in next row, cell {cell_idx + 1}")
                            # For list values, join with line breaks
                            if isinstance(json_value, list):
                                replacement_text = "\n".join(str(item) for item in json_value)
                            cell_replacements = replace_red_text_in_cell(cell, replacement_text)
                            replacements_made += cell_replacements
                            if cell_replacements > 0:
                                print(f"    -> Replaced section content with: '{replacement_text[:100]}...'")
                                
                elif len(row.cells) == 1 or (len(row.cells) > 1 and not any(has_red_text(row.cells[i]) for i in range(1, len(row.cells)))):
                    if has_red_text(key_cell):
                        cell_replacements = process_single_column_sections(key_cell, key_text, flat_json)
                        replacements_made += cell_replacements
                else:
                    for cell_idx in range(1, len(row.cells)):
                        value_cell = row.cells[cell_idx]
                        if has_red_text(value_cell):
                            print(f"    βœ… Found red text in column {cell_idx + 1}")
                            cell_replacements = replace_red_text_in_cell(value_cell, replacement_text)
                            replacements_made += cell_replacements
            else:
                if len(row.cells) == 1 and has_red_text(key_cell):
                    red_text = ""
                    for paragraph in key_cell.paragraphs:
                        for run in paragraph.runs:
                            if is_red(run):
                                red_text += run.text
                    if red_text.strip():
                        section_value = find_matching_json_value(red_text.strip(), flat_json)
                        if section_value is not None:
                            section_replacement = get_value_as_string(section_value, red_text.strip())
                            cell_replacements = replace_red_text_in_cell(key_cell, section_replacement)
                            replacements_made += cell_replacements
                
                # Handle tables where red text appears in multiple columns (like contact info tables)
                for cell_idx in range(len(row.cells)):
                    cell = row.cells[cell_idx]
                    if has_red_text(cell):
                        # Get the red text from this cell
                        red_text = ""
                        for paragraph in cell.paragraphs:
                            for run in paragraph.runs:
                                if is_red(run):
                                    red_text += run.text
                        
                        if red_text.strip():
                            # Try to find a direct mapping for this red text
                            section_value = find_matching_json_value(red_text.strip(), flat_json)
                            if section_value is not None:
                                section_replacement = get_value_as_string(section_value, red_text.strip())
                                cell_replacements = replace_red_text_in_cell(cell, section_replacement)
                                replacements_made += cell_replacements
                                if cell_replacements > 0:
                                    print(f"    βœ… Replaced red text '{red_text.strip()[:30]}...' with '{section_replacement[:30]}...' in cell {cell_idx + 1}")
    
    return replacements_made

def process_paragraphs(document, flat_json):
    replacements_made = 0
    print(f"\nπŸ” Processing paragraphs:")
    for para_idx, paragraph in enumerate(document.paragraphs):
        red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
        if red_runs:
            full_text = paragraph.text.strip()
            red_text_only = "".join(run.text for run in red_runs).strip()
            print(f"  πŸ“Œ Paragraph {para_idx + 1}: Found red text: '{red_text_only}'")
            
            # Try to match the red text specifically first
            json_value = find_matching_json_value(red_text_only, flat_json)
            
            # If no match, try some common patterns
            if json_value is None:
                # Check for signature patterns
                if "AUDITOR SIGNATURE" in red_text_only.upper() or "DATE" in red_text_only.upper():
                    json_value = find_matching_json_value("auditor signature", flat_json)
                elif "OPERATOR SIGNATURE" in red_text_only.upper():
                    json_value = find_matching_json_value("operator signature", flat_json)
                    
            if json_value is not None:
                replacement_text = get_value_as_string(json_value)
                print(f"    βœ… Replacing red text with: '{replacement_text}'")
                red_runs[0].text = replacement_text
                red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
                for run in red_runs[1:]:
                    run.text = ''
                replacements_made += 1
    return replacements_made

def main():
    json_path = 'updated_word_data.json'
    docx_path = 'test.docx'
    output_path = 'updated_reportv1.docx'

    try:
        json_data = load_json(json_path)
        flat_json = flatten_json(json_data)
        print("πŸ“„ Available JSON keys (sample):")
        count = 0
        for key, value in sorted(flat_json.items()):
            if count < 10:
                print(f"  - {key}: {value}")
                count += 1
        print(f"  ... and {len(flat_json) - count} more keys\n")

        doc = Document(docx_path)

        table_replacements = process_tables(doc, flat_json)
        paragraph_replacements = process_paragraphs(doc, flat_json)
        total_replacements = table_replacements + paragraph_replacements

        doc.save(output_path)
        print(f"\nβœ… Document saved as: {output_path}")
        print(f"βœ… Total replacements: {total_replacements} ({table_replacements} in tables, {paragraph_replacements} in paragraphs)")

    except FileNotFoundError as e:
        print(f"❌ File not found: {e}")
    except Exception as e:
        print(f"❌ Error: {e}")
        import traceback
        traceback.print_exc()

if __name__ == "__main__":
    main()