Spaces:
Running
Running
File size: 30,767 Bytes
e8b46b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 |
import json
from docx import Document
from docx.shared import RGBColor
import re
def load_json(filepath):
with open(filepath, 'r') as file:
return json.load(file)
def flatten_json(y, prefix=''):
out = {}
for key, val in y.items():
new_key = f"{prefix}.{key}" if prefix else key
if isinstance(val, dict):
out.update(flatten_json(val, new_key))
else:
out[new_key] = val
out[key] = val
return out
def is_red(run):
color = run.font.color
return color and (color.rgb == RGBColor(255, 0, 0) or getattr(color, "theme_color", None) == 1)
def get_value_as_string(value, field_name=""):
if isinstance(value, list):
if len(value) == 0:
return ""
elif len(value) == 1:
return str(value[0])
else:
if "australian company number" in field_name.lower() or "company number" in field_name.lower():
return value
else:
return " ".join(str(v) for v in value)
else:
return str(value)
def find_matching_json_value(field_name, flat_json):
"""Find matching JSON value based on field name (key)"""
field_name = field_name.strip()
# Manual mapping for specific sections that need special handling
manual_mappings = {
"attendance list name and position title": "Attendance List (Names and Position Titles).Attendance List (Names and Position Titles)",
"attendance list (names and position titles)": "Attendance List (Names and Position Titles).Attendance List (Names and Position Titles)",
"nature of the operators business (summary)": "Nature of the Operators Business (Summary).Nature of the Operators Business (Summary)",
"nature of the operators business (summary):": "Nature of the Operators Business (Summary).Nature of the Operators Business (Summary)",
"nature of operators business (summary)": "Nature of the Operators Business (Summary).Nature of the Operators Business (Summary)",
"nature of operators business (summary):": "Nature of the Operators Business (Summary).Nature of the Operators Business (Summary)",
# Paragraph-level mappings
"mass management": "paragraphs.MASS MANAGEMENT",
"liam herbig": "paragraphs.MASS MANAGEMENT", # Name should be replaced with company name
"date": "paragraphs.This management system I have audited when followed will ensure compliance with the relevant NHVAS Business Rules & Standards.",
# Date-related mappings
"13.11.2024": "paragraphs.This management system I have audited when followed will ensure compliance with the relevant NHVAS Business Rules & Standards.",
"auditor signature": "paragraphs.This management system I have audited when followed will ensure compliance with the relevant NHVAS Business Rules & Standards.",
"operator signature": "paragraphs.I hereby consent to information relating to my Accreditation to be shared with other law enforcement agencies, including a service provider authorised under the Heavy Vehicle National Law.",
# Specific data mappings
"jodie jones": "Audit Information.Auditor name",
"13th november 2024": "Audit Information.Date of Audit",
"adelaide barossa transport & warehousing pty ltd": "Operator Information.Operator name (Legal entity)",
"manager": "Operator Information.Operator name (Legal entity)", # Replace manager title with company name
"liam herbig βmanager": "Operator Information.Operator name (Legal entity)",
"liam herbig β manager": "Operator Information.Operator name (Legal entity)",
"deborah herbig β manager": "Operator Information.Operator name (Legal entity)",
# Contact information mappings (old data in red text -> new data from JSON)
"141 sitz road callington sa 5254": "Operator Information.Operator business address", # Replace old address with new
"po box 743 mt barker sa": "Operator Information.Operator Postal address", # Replace old postal with new
"debherbig@bigpond.com": "Operator Information.Email address", # Replace old email with new
"0447 710 602": "Operator Information.Operator Telephone Number", # Replace old phone with new
# Manual/Version mappings (old version -> new version)
"mahlo 092021v1": "Operator Information.NHVAS Manual (Policies and Procedures) developed by", # Replace old manual with new
# These should stay as they are (no replacement needed, just different format)
"511840": "Operator Information.NHVAS Accreditation No. (If applicable)", # Keep accreditation number
"26th october 2023": "Audit Information.Date of Audit", # Use audit date instead
# Std 5 and Std 6 mappings
"the latest verification was dated 23rdnovember 2022": "Mass Management Summary of Audit findings.Std 5. Verification",
"the latest verification was dated 23rd november 2022": "Mass Management Summary of Audit findings.Std 5. Verification",
"internal review was dated 23rd august 2023 with 0 ncr": "Mass Management Summary of Audit findings.Std 6. Internal Review",
"23rd august2023 with 0 trips, 0 trips using mass, 0 overloads and 0 ncr's": "Mass Management Summary of Audit findings.Std 6. Internal Review",
"23rd august 2023 with 0 trips, 0 trips using mass, 0 overloads and 0 ncr's": "Mass Management Summary of Audit findings.Std 6. Internal Review",
}
# Check manual mappings first
normalized_field = field_name.lower().strip()
if normalized_field in manual_mappings:
mapped_key = manual_mappings[normalized_field]
if mapped_key in flat_json:
print(f" β
Manual mapping found for '{field_name}' -> '{mapped_key}'")
return flat_json[mapped_key]
# Try exact match first
if field_name in flat_json:
print(f" Direct match found for key '{field_name}'")
return flat_json[field_name]
# Try case-insensitive exact match
for key, value in flat_json.items():
if key.lower() == field_name.lower():
print(f" Case-insensitive match found for key '{field_name}' with JSON key '{key}'")
return value
# Try to find a key that ends with this field name
for key, value in flat_json.items():
if key.endswith('.' + field_name):
print(f" Suffix match found for key '{field_name}' with JSON key '{key}'")
return value
# Try partial matching for fields with parentheses or additional text
clean_field = re.sub(r'\s*\([^)]*\)', '', field_name).strip() # Remove parentheses content
for key, value in flat_json.items():
clean_key = re.sub(r'\s*\([^)]*\)', '', key).strip()
if clean_field.lower() == clean_key.lower():
print(f" Clean match found for key '{field_name}' with JSON key '{key}'")
return value
# Try word-based matching - more flexible approach
field_words = set(word.lower() for word in re.findall(r'\b\w+\b', field_name) if len(word) > 2)
best_match = None
best_score = 0
for key, value in flat_json.items():
key_words = set(word.lower() for word in re.findall(r'\b\w+\b', key) if len(word) > 2)
# Calculate how many words match
common_words = field_words.intersection(key_words)
if common_words:
score = len(common_words) / max(len(field_words), len(key_words)) # Normalized score
if score > best_score:
best_score = score
best_match = (key, value)
if best_match and best_score >= 0.5: # At least 50% word overlap
print(f" Word-based match found for key '{field_name}' with JSON key '{best_match[0]}' (score: {best_score:.2f})")
return best_match[1]
# No match found
print(f" β No match found for '{field_name}'")
return None
def get_clean_text(cell):
text = ""
for paragraph in cell.paragraphs:
for run in paragraph.runs:
text += run.text
return text.strip()
def has_red_text(cell):
for paragraph in cell.paragraphs:
for run in paragraph.runs:
if is_red(run) and run.text.strip():
return True
return False
def replace_red_text_in_cell(cell, replacement_text):
replacements_made = 0
# First, collect all red text to show what we're replacing
all_red_text = ""
for paragraph in cell.paragraphs:
for run in paragraph.runs:
if is_red(run):
all_red_text += run.text
if all_red_text.strip():
print(f" β
Replacing red text: '{all_red_text[:50]}...' β '{replacement_text[:50]}...'")
# Now replace all red text in the cell with the replacement text
first_replacement_done = False
for paragraph in cell.paragraphs:
red_runs = [run for run in paragraph.runs if is_red(run)]
if red_runs:
if not first_replacement_done:
# Replace the first red run with our text
red_runs[0].text = replacement_text
red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
first_replacement_done = True
replacements_made = 1
else:
# Clear the first red run since we already replaced content
red_runs[0].text = ''
# Clear all other red runs in this paragraph
for run in red_runs[1:]:
run.text = ''
return replacements_made
def handle_australian_company_number(row, company_numbers):
replacements_made = 0
for i, digit in enumerate(company_numbers):
cell_idx = i + 1
if cell_idx < len(row.cells):
cell = row.cells[cell_idx]
if has_red_text(cell):
cell_replacements = replace_red_text_in_cell(cell, str(digit))
replacements_made += cell_replacements
print(f" -> Placed digit '{digit}' in cell {cell_idx + 1}")
return replacements_made
def handle_vehicle_registration_table(table, flat_json):
"""Handle the Vehicle Registration Numbers table with column-based data"""
replacements_made = 0
# Look for the vehicle registration data in the flattened JSON
vehicle_section = None
# Try to find the vehicle registration section
for key, value in flat_json.items():
if "vehicle registration numbers of records examined" in key.lower():
if isinstance(value, dict): # This should be the nested structure
vehicle_section = value
print(f" β
Found vehicle data in key: '{key}'")
break
if not vehicle_section:
# Try alternative approach - look for individual column keys
potential_columns = {}
for key, value in flat_json.items():
if any(col_name in key.lower() for col_name in ["registration number", "sub-contractor", "weight verification", "rfs suspension"]):
# Extract the column name from the flattened key
if "." in key:
column_name = key.split(".")[-1]
else:
column_name = key
potential_columns[column_name] = value
if potential_columns:
vehicle_section = potential_columns
print(f" β
Found vehicle data from flattened keys: {list(vehicle_section.keys())}")
else:
print(f" β Vehicle registration data not found in JSON")
return 0
print(f" β
Found vehicle registration data with {len(vehicle_section)} columns")
# Find header row (usually row 0 or 1)
header_row_idx = -1
header_row = None
for row_idx, row in enumerate(table.rows):
row_text = "".join(get_clean_text(cell).lower() for cell in row.cells)
if "registration" in row_text and "number" in row_text:
header_row_idx = row_idx
header_row = row
break
if header_row_idx == -1:
print(f" β Could not find header row in vehicle table")
return 0
print(f" β
Found header row at index {header_row_idx}")
# Create mapping between column indices and JSON keys
column_mapping = {}
for col_idx, cell in enumerate(header_row.cells):
header_text = get_clean_text(cell).strip()
if not header_text or header_text.lower() == "no.":
continue
# Try to match header text with JSON keys
best_match = None
best_score = 0
# Normalize header text for better matching
normalized_header = header_text.lower().replace("(", " (").replace(")", ") ").strip()
for json_key in vehicle_section.keys():
normalized_json = json_key.lower().strip()
# Try exact match first (after normalization)
if normalized_header == normalized_json:
best_match = json_key
best_score = 1.0
break
# Try word-based matching
header_words = set(word.lower() for word in normalized_header.split() if len(word) > 2)
json_words = set(word.lower() for word in normalized_json.split() if len(word) > 2)
if header_words and json_words:
common_words = header_words.intersection(json_words)
score = len(common_words) / max(len(header_words), len(json_words))
if score > best_score and score >= 0.3: # At least 30% match
best_score = score
best_match = json_key
# Try substring matching for cases like "RegistrationNumber" vs "Registration Number"
header_clean = normalized_header.replace(" ", "").replace("-", "").replace("(", "").replace(")", "")
json_clean = normalized_json.replace(" ", "").replace("-", "").replace("(", "").replace(")", "")
if header_clean in json_clean or json_clean in header_clean:
if len(header_clean) > 5 and len(json_clean) > 5: # Only for meaningful matches
substring_score = min(len(header_clean), len(json_clean)) / max(len(header_clean), len(json_clean))
if substring_score > best_score and substring_score >= 0.6:
best_score = substring_score
best_match = json_key
if best_match:
column_mapping[col_idx] = best_match
print(f" π Column {col_idx + 1} ('{header_text}') -> '{best_match}' (score: {best_score:.2f})")
if not column_mapping:
print(f" β No column mappings found")
return 0
# Determine how many data rows we need based on the JSON arrays
max_data_rows = 0
for json_key, data in vehicle_section.items():
if isinstance(data, list):
max_data_rows = max(max_data_rows, len(data))
print(f" π Need to populate {max_data_rows} data rows")
# Process all required data rows
for data_row_index in range(max_data_rows):
table_row_idx = header_row_idx + 1 + data_row_index
# Check if this table row exists, if not, add it
if table_row_idx >= len(table.rows):
print(f" β οΈ Row {table_row_idx + 1} doesn't exist - table only has {len(table.rows)} rows")
print(f" β Adding new row for vehicle {data_row_index + 1}")
# Add a new row to the table
new_row = table.add_row()
print(f" β
Successfully added row {len(table.rows)} to the table")
row = table.rows[table_row_idx]
print(f" π Processing data row {table_row_idx + 1} (vehicle {data_row_index + 1})")
# Fill in data for each mapped column
for col_idx, json_key in column_mapping.items():
if col_idx < len(row.cells):
cell = row.cells[col_idx]
# Get the data for this column and row
column_data = vehicle_section.get(json_key, [])
if isinstance(column_data, list) and data_row_index < len(column_data):
replacement_value = str(column_data[data_row_index])
# Check if cell has red text or is empty (needs data)
cell_text = get_clean_text(cell)
if has_red_text(cell) or not cell_text.strip():
# If cell is empty, add the text directly
if not cell_text.strip():
cell.text = replacement_value
replacements_made += 1
print(f" -> Added '{replacement_value}' to empty cell (column '{json_key}')")
else:
# If cell has red text, replace it
cell_replacements = replace_red_text_in_cell(cell, replacement_value)
replacements_made += cell_replacements
if cell_replacements > 0:
print(f" -> Replaced red text with '{replacement_value}' (column '{json_key}')")
return replacements_made
def handle_print_accreditation_section(table, flat_json):
"""Handle the special case of print accreditation name with 2 values"""
replacements_made = 0
# Look for the print accreditation name data
print_data = flat_json.get("print accreditation name.print accreditation name", [])
if not isinstance(print_data, list) or len(print_data) < 2:
return 0
name_value = print_data[0] # "Simon Anderson"
position_value = print_data[1] # "Director"
print(f" π Print accreditation data: Name='{name_value}', Position='{position_value}'")
# Find rows with "Print Name" and "Position Title"
for row_idx, row in enumerate(table.rows):
if len(row.cells) >= 2:
# Check if this row has the headers
cell1_text = get_clean_text(row.cells[0]).lower()
cell2_text = get_clean_text(row.cells[1]).lower()
if "print name" in cell1_text and "position title" in cell2_text:
print(f" π Found header row {row_idx + 1}: '{cell1_text}' | '{cell2_text}'")
# Check the next row for red text to replace
if row_idx + 1 < len(table.rows):
data_row = table.rows[row_idx + 1]
if len(data_row.cells) >= 2:
# Replace Print Name (first cell)
if has_red_text(data_row.cells[0]):
cell_replacements = replace_red_text_in_cell(data_row.cells[0], name_value)
replacements_made += cell_replacements
if cell_replacements > 0:
print(f" β
Replaced Print Name: '{name_value}'")
# Replace Position Title (second cell)
if has_red_text(data_row.cells[1]):
cell_replacements = replace_red_text_in_cell(data_row.cells[1], position_value)
replacements_made += cell_replacements
if cell_replacements > 0:
print(f" β
Replaced Position Title: '{position_value}'")
break # Found the section, no need to continue
return replacements_made
def process_single_column_sections(cell, field_name, flat_json):
json_value = find_matching_json_value(field_name, flat_json)
if json_value is not None:
replacement_text = get_value_as_string(json_value, field_name)
if isinstance(json_value, list) and len(json_value) > 1:
replacement_text = "\n".join(str(item) for item in json_value)
if has_red_text(cell):
print(f" β
Replacing red text in single-column section: '{field_name}'")
print(f" β
Replacement text:\n{replacement_text}")
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
if cell_replacements > 0:
print(f" -> Replaced with: '{replacement_text[:100]}...'")
return cell_replacements
return 0
def process_tables(document, flat_json):
"""Process tables to find key-value pairs and replace red values"""
replacements_made = 0
for table_idx, table in enumerate(document.tables):
print(f"\nπ Processing table {table_idx + 1}:")
# Check if this is the vehicle registration table
table_text = ""
for row in table.rows[:3]: # Check first 3 rows
for cell in row.cells:
table_text += get_clean_text(cell).lower() + " "
# Look for vehicle registration indicators (need multiple indicators to avoid false positives)
vehicle_indicators = ["registration number", "sub-contractor", "weight verification", "rfs suspension"]
indicator_count = sum(1 for indicator in vehicle_indicators if indicator in table_text)
if indicator_count >= 3: # Require at least 3 indicators to be sure it's a vehicle table
print(f" π Detected Vehicle Registration table")
vehicle_replacements = handle_vehicle_registration_table(table, flat_json)
replacements_made += vehicle_replacements
continue # Skip normal processing for this table
# Check if this is the print accreditation table
print_accreditation_indicators = ["print name", "position title"]
indicator_count = sum(1 for indicator in print_accreditation_indicators if indicator in table_text)
if indicator_count >= 2: # Require at least 2 indicators to be sure it's a print accreditation table
print(f" π Detected Print Accreditation table")
print_accreditation_replacements = handle_print_accreditation_section(table, flat_json)
replacements_made += print_accreditation_replacements
continue # Skip normal processing for this table
for row_idx, row in enumerate(table.rows):
if len(row.cells) < 1: # Skip empty rows
continue
# Get the key from the first column
key_cell = row.cells[0]
key_text = get_clean_text(key_cell)
if not key_text:
continue
print(f" π Row {row_idx + 1}: Key = '{key_text}'")
# Check if this key exists in our JSON
json_value = find_matching_json_value(key_text, flat_json)
if json_value is not None:
replacement_text = get_value_as_string(json_value, key_text)
# Special handling for Australian Company Number
if ("australian company number" in key_text.lower() or "company number" in key_text.lower()) and isinstance(json_value, list):
cell_replacements = handle_australian_company_number(row, json_value)
replacements_made += cell_replacements
# Handle section headers (like Attendance List, Nature of Business) where content is in next row
elif ("attendance list" in key_text.lower() or "nature of" in key_text.lower()) and row_idx + 1 < len(table.rows):
print(f" β
Section header detected, checking next row for content...")
next_row = table.rows[row_idx + 1]
# Check all cells in the next row for red text
for cell_idx, cell in enumerate(next_row.cells):
if has_red_text(cell):
print(f" β
Found red text in next row, cell {cell_idx + 1}")
# For list values, join with line breaks
if isinstance(json_value, list):
replacement_text = "\n".join(str(item) for item in json_value)
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
replacements_made += cell_replacements
if cell_replacements > 0:
print(f" -> Replaced section content with: '{replacement_text[:100]}...'")
elif len(row.cells) == 1 or (len(row.cells) > 1 and not any(has_red_text(row.cells[i]) for i in range(1, len(row.cells)))):
if has_red_text(key_cell):
cell_replacements = process_single_column_sections(key_cell, key_text, flat_json)
replacements_made += cell_replacements
else:
for cell_idx in range(1, len(row.cells)):
value_cell = row.cells[cell_idx]
if has_red_text(value_cell):
print(f" β
Found red text in column {cell_idx + 1}")
cell_replacements = replace_red_text_in_cell(value_cell, replacement_text)
replacements_made += cell_replacements
else:
if len(row.cells) == 1 and has_red_text(key_cell):
red_text = ""
for paragraph in key_cell.paragraphs:
for run in paragraph.runs:
if is_red(run):
red_text += run.text
if red_text.strip():
section_value = find_matching_json_value(red_text.strip(), flat_json)
if section_value is not None:
section_replacement = get_value_as_string(section_value, red_text.strip())
cell_replacements = replace_red_text_in_cell(key_cell, section_replacement)
replacements_made += cell_replacements
# Handle tables where red text appears in multiple columns (like contact info tables)
for cell_idx in range(len(row.cells)):
cell = row.cells[cell_idx]
if has_red_text(cell):
# Get the red text from this cell
red_text = ""
for paragraph in cell.paragraphs:
for run in paragraph.runs:
if is_red(run):
red_text += run.text
if red_text.strip():
# Try to find a direct mapping for this red text
section_value = find_matching_json_value(red_text.strip(), flat_json)
if section_value is not None:
section_replacement = get_value_as_string(section_value, red_text.strip())
cell_replacements = replace_red_text_in_cell(cell, section_replacement)
replacements_made += cell_replacements
if cell_replacements > 0:
print(f" β
Replaced red text '{red_text.strip()[:30]}...' with '{section_replacement[:30]}...' in cell {cell_idx + 1}")
return replacements_made
def process_paragraphs(document, flat_json):
replacements_made = 0
print(f"\nπ Processing paragraphs:")
for para_idx, paragraph in enumerate(document.paragraphs):
red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
if red_runs:
full_text = paragraph.text.strip()
red_text_only = "".join(run.text for run in red_runs).strip()
print(f" π Paragraph {para_idx + 1}: Found red text: '{red_text_only}'")
# Try to match the red text specifically first
json_value = find_matching_json_value(red_text_only, flat_json)
# If no match, try some common patterns
if json_value is None:
# Check for signature patterns
if "AUDITOR SIGNATURE" in red_text_only.upper() or "DATE" in red_text_only.upper():
json_value = find_matching_json_value("auditor signature", flat_json)
elif "OPERATOR SIGNATURE" in red_text_only.upper():
json_value = find_matching_json_value("operator signature", flat_json)
if json_value is not None:
replacement_text = get_value_as_string(json_value)
print(f" β
Replacing red text with: '{replacement_text}'")
red_runs[0].text = replacement_text
red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
for run in red_runs[1:]:
run.text = ''
replacements_made += 1
return replacements_made
def main():
json_path = 'updated_word_data.json'
docx_path = 'test.docx'
output_path = 'updated_reportv1.docx'
try:
json_data = load_json(json_path)
flat_json = flatten_json(json_data)
print("π Available JSON keys (sample):")
count = 0
for key, value in sorted(flat_json.items()):
if count < 10:
print(f" - {key}: {value}")
count += 1
print(f" ... and {len(flat_json) - count} more keys\n")
doc = Document(docx_path)
table_replacements = process_tables(doc, flat_json)
paragraph_replacements = process_paragraphs(doc, flat_json)
total_replacements = table_replacements + paragraph_replacements
doc.save(output_path)
print(f"\nβ
Document saved as: {output_path}")
print(f"β
Total replacements: {total_replacements} ({table_replacements} in tables, {paragraph_replacements} in paragraphs)")
except FileNotFoundError as e:
print(f"β File not found: {e}")
except Exception as e:
print(f"β Error: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()
|