Spaces:
Running
Running
File size: 52,775 Bytes
e8b46b5 c38c9d4 e8b46b5 c38c9d4 e8b46b5 c38c9d4 e8b46b5 c38c9d4 e8b46b5 c38c9d4 e8b46b5 5b2b3a8 e8b46b5 c38c9d4 e8b46b5 5b2b3a8 e8b46b5 c38c9d4 e8b46b5 5b2b3a8 e8b46b5 5b2b3a8 e8b46b5 5b2b3a8 c38c9d4 e8b46b5 c38c9d4 5b2b3a8 c38c9d4 5b2b3a8 e8b46b5 412e2ed 5b2b3a8 e8b46b5 c38c9d4 5b2b3a8 c38c9d4 5b2b3a8 c38c9d4 5b2b3a8 c38c9d4 5b2b3a8 c38c9d4 5b2b3a8 c38c9d4 412e2ed 5b2b3a8 c38c9d4 412e2ed 5b2b3a8 c38c9d4 5b2b3a8 c38c9d4 5efc8a5 c38c9d4 5efc8a5 c38c9d4 5efc8a5 c38c9d4 5efc8a5 412e2ed 5efc8a5 c38c9d4 412e2ed c38c9d4 5efc8a5 c38c9d4 5efc8a5 ddb37e5 5efc8a5 c38c9d4 ddb37e5 c38c9d4 5efc8a5 c38c9d4 5efc8a5 ddb37e5 5efc8a5 c38c9d4 ddb37e5 c38c9d4 e8b46b5 7755a4a e8b46b5 c38c9d4 8df4ecc e8b46b5 8df4ecc e8b46b5 c38c9d4 e8b46b5 c38c9d4 8df4ecc c38c9d4 e8b46b5 7755a4a e8b46b5 c38c9d4 e8b46b5 c38c9d4 e8b46b5 c38c9d4 e8b46b5 c38c9d4 e8b46b5 c38c9d4 e8b46b5 c38c9d4 e8b46b5 c38c9d4 8df4ecc c38c9d4 8df4ecc c38c9d4 e8b46b5 c38c9d4 e8b46b5 7755a4a e8b46b5 c38c9d4 7755a4a c38c9d4 7755a4a c38c9d4 7755a4a ddb37e5 c38c9d4 ddb37e5 c38c9d4 7755a4a 5b2b3a8 c38c9d4 e8b46b5 7755a4a 5b2b3a8 7755a4a c38c9d4 e8b46b5 5b2b3a8 e8b46b5 5b2b3a8 e8b46b5 7755a4a 5b2b3a8 e8b46b5 c38c9d4 7755a4a e8b46b5 c38c9d4 7755a4a c38c9d4 e8b46b5 7755a4a 5b2b3a8 7755a4a 5b2b3a8 7755a4a c38c9d4 412e2ed e8b46b5 a6e31ac c38c9d4 a6e31ac 7755a4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 |
import json
from docx import Document
from docx.shared import RGBColor
import re
# Your original heading patterns (unchanged)
HEADING_PATTERNS = {
"main": [
r"NHVAS\s+Audit\s+Summary\s+Report",
r"NATIONAL\s+HEAVY\s+VEHICLE\s+ACCREDITATION\s+AUDIT\s+SUMMARY\s+REPORT",
r"NHVAS\s+AUDIT\s+SUMMARY\s+REPORT"
],
"sub": [
r"AUDIT\s+OBSERVATIONS\s+AND\s+COMMENTS",
r"MAINTENANCE\s+MANAGEMENT",
r"MASS\s+MANAGEMENT",
r"FATIGUE\s+MANAGEMENT",
r"Fatigue\s+Management\s+Summary\s+of\s+Audit\s+findings",
r"MAINTENANCE\s+MANAGEMENT\s+SUMMARY\s+OF\s+AUDIT\s+FINDINGS",
r"MASS\s+MANAGEMENT\s+SUMMARY\s+OF\s+AUDIT\s+FINDINGS",
r"Vehicle\s+Registration\s+Numbers\s+of\s+Records\s+Examined",
r"CORRECTIVE\s+ACTION\s+REQUEST\s+\(CAR\)",
r"NHVAS\s+APPROVED\s+AUDITOR\s+DECLARATION",
r"Operator\s+Declaration",
r"Operator\s+Information",
r"Driver\s*/\s*Scheduler\s+Records\s+Examined"
]
}
def load_json(filepath):
with open(filepath, 'r') as file:
return json.load(file)
def flatten_json(y, prefix=''):
out = {}
for key, val in y.items():
new_key = f"{prefix}.{key}" if prefix else key
if isinstance(val, dict):
out.update(flatten_json(val, new_key))
else:
out[new_key] = val
out[key] = val
return out
def is_red(run):
color = run.font.color
return color and (color.rgb == RGBColor(255, 0, 0) or getattr(color, "theme_color", None) == 1)
def get_value_as_string(value, field_name=""):
if isinstance(value, list):
if len(value) == 0:
return ""
elif len(value) == 1:
return str(value[0])
else:
if "australian company number" in field_name.lower() or "company number" in field_name.lower():
return value
else:
return " ".join(str(v) for v in value)
else:
return str(value)
def find_matching_json_value(field_name, flat_json):
"""Your original matching function with minimal improvements"""
field_name = field_name.strip()
# Try exact match first
if field_name in flat_json:
print(f" β
Direct match found for key '{field_name}'")
return flat_json[field_name]
# Try case-insensitive exact match
for key, value in flat_json.items():
if key.lower() == field_name.lower():
print(f" β
Case-insensitive match found for key '{field_name}' with JSON key '{key}'")
return value
# π― MINIMAL IMPROVEMENT: Better Print Name detection for operator vs auditor
if field_name.lower().strip() == "print name":
# Look in the flat_json keys to see what context we're in
operator_keys = [k for k in flat_json.keys() if "operator" in k.lower() and "print name" in k.lower()]
auditor_keys = [k for k in flat_json.keys() if "auditor" in k.lower() and ("print name" in k.lower() or "name" in k.lower())]
# If we have operator-specific keys, prefer those in operator context
if operator_keys:
print(f" β
Operator Print Name match: '{field_name}' -> '{operator_keys[0]}'")
return flat_json[operator_keys[0]]
elif auditor_keys:
print(f" β
Auditor Name match: '{field_name}' -> '{auditor_keys[0]}'")
return flat_json[auditor_keys[0]]
# Try suffix matching (for nested keys like "section.field")
for key, value in flat_json.items():
if '.' in key and key.split('.')[-1].lower() == field_name.lower():
print(f" β
Suffix match found for key '{field_name}' with JSON key '{key}'")
return value
# Try partial matching - remove parentheses and special chars
clean_field = re.sub(r'[^\w\s]', ' ', field_name.lower()).strip()
clean_field = re.sub(r'\s+', ' ', clean_field)
for key, value in flat_json.items():
clean_key = re.sub(r'[^\w\s]', ' ', key.lower()).strip()
clean_key = re.sub(r'\s+', ' ', clean_key)
if clean_field == clean_key:
print(f" β
Clean match found for key '{field_name}' with JSON key '{key}'")
return value
# Enhanced fuzzy matching with better scoring
field_words = set(word.lower() for word in re.findall(r'\b\w+\b', field_name) if len(word) > 2)
if not field_words:
return None
best_match = None
best_score = 0
best_key = None
for key, value in flat_json.items():
key_words = set(word.lower() for word in re.findall(r'\b\w+\b', key) if len(word) > 2)
if not key_words:
continue
# Calculate similarity score
common_words = field_words.intersection(key_words)
if common_words:
# Use Jaccard similarity: intersection / union
similarity = len(common_words) / len(field_words.union(key_words))
# Bonus for high word coverage in field_name
coverage = len(common_words) / len(field_words)
final_score = (similarity * 0.6) + (coverage * 0.4)
if final_score > best_score:
best_score = final_score
best_match = value
best_key = key
if best_match and best_score >= 0.25:
print(f" β
Fuzzy match found for key '{field_name}' with JSON key '{best_key}' (score: {best_score:.2f})")
return best_match
print(f" β No match found for '{field_name}'")
return None
def get_clean_text(cell):
text = ""
for paragraph in cell.paragraphs:
for run in paragraph.runs:
text += run.text
return text.strip()
def has_red_text(cell):
for paragraph in cell.paragraphs:
for run in paragraph.runs:
if is_red(run) and run.text.strip():
return True
return False
def extract_red_text_segments(cell):
"""Your original red text extraction (unchanged)"""
red_segments = []
for para_idx, paragraph in enumerate(cell.paragraphs):
current_segment = ""
segment_runs = []
for run_idx, run in enumerate(paragraph.runs):
if is_red(run):
if run.text:
current_segment += run.text
segment_runs.append((para_idx, run_idx, run))
else:
# End of current red segment
if segment_runs:
red_segments.append({
'text': current_segment,
'runs': segment_runs.copy(),
'paragraph_idx': para_idx
})
current_segment = ""
segment_runs = []
# Handle segment at end of paragraph
if segment_runs:
red_segments.append({
'text': current_segment,
'runs': segment_runs.copy(),
'paragraph_idx': para_idx
})
return red_segments
def replace_red_text_in_cell(cell, replacement_text):
"""Your original replacement function (unchanged)"""
red_segments = extract_red_text_segments(cell)
if not red_segments:
return 0
if len(red_segments) > 1:
replacements_made = 0
for segment in red_segments:
segment_text = segment['text'].strip()
if segment_text:
pass
if replacements_made == 0:
return replace_all_red_segments(red_segments, replacement_text)
return replace_all_red_segments(red_segments, replacement_text)
def replace_all_red_segments(red_segments, replacement_text):
"""Your original function (unchanged)"""
if not red_segments:
return 0
if '\n' in replacement_text:
replacement_lines = replacement_text.split('\n')
else:
replacement_lines = [replacement_text]
replacements_made = 0
if red_segments and replacement_lines:
first_segment = red_segments[0]
if first_segment['runs']:
first_run = first_segment['runs'][0][2]
first_run.text = replacement_lines[0]
first_run.font.color.rgb = RGBColor(0, 0, 0)
replacements_made = 1
for _, _, run in first_segment['runs'][1:]:
run.text = ''
for segment in red_segments[1:]:
for _, _, run in segment['runs']:
run.text = ''
if len(replacement_lines) > 1 and red_segments:
try:
first_run = red_segments[0]['runs'][0][2]
paragraph = first_run.element.getparent()
for line in replacement_lines[1:]:
if line.strip():
from docx.oxml import OxmlElement, ns
br = OxmlElement('w:br')
first_run.element.append(br)
new_run = paragraph.add_run(line.strip())
new_run.font.color.rgb = RGBColor(0, 0, 0)
except:
if red_segments and red_segments[0]['runs']:
first_run = red_segments[0]['runs'][0][2]
first_run.text = ' '.join(replacement_lines)
first_run.font.color.rgb = RGBColor(0, 0, 0)
return replacements_made
def replace_single_segment(segment, replacement_text):
"""Your original function (unchanged)"""
if not segment['runs']:
return False
first_run = segment['runs'][0][2]
first_run.text = replacement_text
first_run.font.color.rgb = RGBColor(0, 0, 0)
for _, _, run in segment['runs'][1:]:
run.text = ''
return True
def handle_multiple_red_segments_in_cell(cell, flat_json):
"""Your original function (unchanged)"""
red_segments = extract_red_text_segments(cell)
if not red_segments:
return 0
print(f" π Found {len(red_segments)} red text segments in cell")
replacements_made = 0
unmatched_segments = []
for i, segment in enumerate(red_segments):
segment_text = segment['text'].strip()
if not segment_text:
continue
print(f" Segment {i+1}: '{segment_text[:50]}...'")
json_value = find_matching_json_value(segment_text, flat_json)
if json_value is not None:
replacement_text = get_value_as_string(json_value, segment_text)
if isinstance(json_value, list) and len(json_value) > 1:
replacement_text = "\n".join(str(item) for item in json_value if str(item).strip())
success = replace_single_segment(segment, replacement_text)
if success:
replacements_made += 1
print(f" β
Replaced segment '{segment_text[:30]}...' with '{replacement_text[:30]}...'")
else:
unmatched_segments.append(segment)
print(f" β³ No individual match for segment '{segment_text[:30]}...'")
if unmatched_segments and replacements_made == 0:
combined_text = " ".join(seg['text'] for seg in red_segments).strip()
print(f" π Trying combined text match: '{combined_text[:50]}...'")
json_value = find_matching_json_value(combined_text, flat_json)
if json_value is not None:
replacement_text = get_value_as_string(json_value, combined_text)
if isinstance(json_value, list) and len(json_value) > 1:
replacement_text = "\n".join(str(item) for item in json_value if str(item).strip())
replacements_made = replace_all_red_segments(red_segments, replacement_text)
print(f" β
Replaced combined text with '{replacement_text[:50]}...'")
return replacements_made
# π― SURGICAL FIX 1: Handle Nature of Business multi-line red text
def handle_nature_business_multiline_fix(cell, flat_json):
"""SURGICAL FIX: Handle multi-line red text in Nature of Business cells"""
if not has_red_text(cell):
return 0
# Check if this cell contains "Nature of the Operators Business"
cell_text = get_clean_text(cell).lower()
if "nature of the operators business" not in cell_text and "nature of the operator business" not in cell_text:
return 0
print(f" π― SURGICAL FIX: Nature of Business multi-line processing")
# Look for sub-fields like "Accreditation Number:" and "Expiry Date:"
red_segments = extract_red_text_segments(cell)
replacements_made = 0
# Try to replace each segment individually first
for segment in red_segments:
segment_text = segment['text'].strip()
if not segment_text:
continue
json_value = find_matching_json_value(segment_text, flat_json)
if json_value is not None:
replacement_text = get_value_as_string(json_value, segment_text)
success = replace_single_segment(segment, replacement_text)
if success:
replacements_made += 1
print(f" β
Fixed segment: '{segment_text[:30]}...'")
# If no individual matches, try combined approach
if replacements_made == 0 and red_segments:
combined_text = " ".join(seg['text'] for seg in red_segments).strip()
json_value = find_matching_json_value(combined_text, flat_json)
if json_value is not None:
replacement_text = get_value_as_string(json_value, combined_text)
replacements_made = replace_all_red_segments(red_segments, replacement_text)
print(f" β
Fixed combined text")
return replacements_made
# π― SURGICAL FIX 2: Handle Operator Declaration table with context awareness
def handle_operator_declaration_fix(table, flat_json):
"""SURGICAL FIX: Handle Operator Declaration Print Name and Position Title with better context detection"""
replacements_made = 0
# Build table context to understand what type of declaration this is
table_context = ""
for row in table.rows:
for cell in row.cells:
table_context += get_clean_text(cell).lower() + " "
# Determine if this is an operator declaration vs auditor declaration
is_operator_declaration = any(keyword in table_context for keyword in [
"hereby acknowledge", "findings detailed", "management system",
"accreditation to be shared", "operator signature"
])
is_auditor_declaration = any(keyword in table_context for keyword in [
"nhvas approved auditor", "auditor registration", "hereby certify",
"auditor signature"
])
# Process the table based on context
for row_idx, row in enumerate(table.rows):
if len(row.cells) >= 2:
cell1_text = get_clean_text(row.cells[0]).strip()
cell2_text = get_clean_text(row.cells[1]).strip()
# Check if this is a header row with Print Name and Position Title
if ("print name" in cell1_text.lower() and "position title" in cell2_text.lower() and
len(table.rows) <= 4): # Small table only
context_type = "Operator" if is_operator_declaration else ("Auditor" if is_auditor_declaration else "Unknown")
print(f" π― SURGICAL FIX: {context_type} Declaration table detected")
# Look for the data row (should be next row)
if row_idx + 1 < len(table.rows):
data_row = table.rows[row_idx + 1]
if len(data_row.cells) >= 2:
name_cell = data_row.cells[0]
position_cell = data_row.cells[1]
# Fix Print Name based on context
if has_red_text(name_cell):
name_value = None
if is_operator_declaration:
# Try operator-specific fields first
for field_attempt in ["Operator Declaration.Print Name", "operator.print name", "Print Name"]:
name_value = find_matching_json_value(field_attempt, flat_json)
if name_value is not None:
break
elif is_auditor_declaration:
# Try auditor-specific fields first
for field_attempt in ["NHVAS Approved Auditor Declaration.Print Name", "auditor name", "auditor", "Print Name"]:
name_value = find_matching_json_value(field_attempt, flat_json)
if name_value is not None:
break
else:
# Fallback to generic
name_value = find_matching_json_value("Print Name", flat_json)
if name_value is not None:
name_text = get_value_as_string(name_value)
cell_replacements = replace_red_text_in_cell(name_cell, name_text)
replacements_made += cell_replacements
print(f" β
Fixed {context_type} Print Name: '{name_text}'")
# Fix Position Title based on context
if has_red_text(position_cell):
position_value = None
if is_operator_declaration:
# Try operator-specific fields first
for field_attempt in ["Operator Declaration.Position Title", "operator.position title", "Position Title"]:
position_value = find_matching_json_value(field_attempt, flat_json)
if position_value is not None:
break
elif is_auditor_declaration:
# Try auditor registration number for auditor declarations
for field_attempt in ["NHVR or Exemplar Global Auditor Registration Number", "auditor registration", "registration number"]:
position_value = find_matching_json_value(field_attempt, flat_json)
if position_value is not None:
break
else:
# Fallback to generic
position_value = find_matching_json_value("Position Title", flat_json)
if position_value is not None:
position_text = get_value_as_string(position_value)
cell_replacements = replace_red_text_in_cell(position_cell, position_text)
replacements_made += cell_replacements
print(f" β
Fixed {context_type} Position/Registration: '{position_text}'")
break # Found the table, stop looking
return replacements_made
def handle_australian_company_number(row, company_numbers):
"""Your original function (unchanged)"""
replacements_made = 0
for i, digit in enumerate(company_numbers):
cell_idx = i + 1
if cell_idx < len(row.cells):
cell = row.cells[cell_idx]
if has_red_text(cell):
cell_replacements = replace_red_text_in_cell(cell, str(digit))
replacements_made += cell_replacements
print(f" -> Placed digit '{digit}' in cell {cell_idx + 1}")
return replacements_made
def handle_vehicle_registration_table(table, flat_json):
"""Your original function (unchanged)"""
replacements_made = 0
# Try to find vehicle registration data
vehicle_section = None
for key, value in flat_json.items():
if "vehicle registration numbers of records examined" in key.lower():
if isinstance(value, dict):
vehicle_section = value
print(f" β
Found vehicle data in key: '{key}'")
break
if not vehicle_section:
potential_columns = {}
for key, value in flat_json.items():
if any(col_name in key.lower() for col_name in ["registration number", "sub-contractor", "weight verification", "rfs suspension"]):
if "." in key:
column_name = key.split(".")[-1]
else:
column_name = key
potential_columns[column_name] = value
if potential_columns:
vehicle_section = potential_columns
print(f" β
Found vehicle data from flattened keys: {list(vehicle_section.keys())}")
else:
print(f" β Vehicle registration data not found in JSON")
return 0
print(f" β
Found vehicle registration data with {len(vehicle_section)} columns")
# Find header row
header_row_idx = -1
header_row = None
for row_idx, row in enumerate(table.rows):
row_text = "".join(get_clean_text(cell).lower() for cell in row.cells)
if "registration" in row_text and "number" in row_text:
header_row_idx = row_idx
header_row = row
break
if header_row_idx == -1:
print(f" β Could not find header row in vehicle table")
return 0
print(f" β
Found header row at index {header_row_idx}")
# Enhanced column mapping
column_mapping = {}
for col_idx, cell in enumerate(header_row.cells):
header_text = get_clean_text(cell).strip()
if not header_text or header_text.lower() == "no.":
continue
best_match = None
best_score = 0
normalized_header = header_text.lower().replace("(", " (").replace(")", ") ").strip()
for json_key in vehicle_section.keys():
normalized_json = json_key.lower().strip()
if normalized_header == normalized_json:
best_match = json_key
best_score = 1.0
break
header_words = set(word.lower() for word in normalized_header.split() if len(word) > 2)
json_words = set(word.lower() for word in normalized_json.split() if len(word) > 2)
if header_words and json_words:
common_words = header_words.intersection(json_words)
score = len(common_words) / max(len(header_words), len(json_words))
if score > best_score and score >= 0.3:
best_score = score
best_match = json_key
header_clean = normalized_header.replace(" ", "").replace("-", "").replace("(", "").replace(")", "")
json_clean = normalized_json.replace(" ", "").replace("-", "").replace("(", "").replace(")", "")
if header_clean in json_clean or json_clean in header_clean:
if len(header_clean) > 5 and len(json_clean) > 5:
substring_score = min(len(header_clean), len(json_clean)) / max(len(header_clean), len(json_clean))
if substring_score > best_score and substring_score >= 0.6:
best_score = substring_score
best_match = json_key
if best_match:
column_mapping[col_idx] = best_match
print(f" π Column {col_idx + 1} ('{header_text}') -> '{best_match}' (score: {best_score:.2f})")
if not column_mapping:
print(f" β No column mappings found")
return 0
# Determine data rows needed
max_data_rows = 0
for json_key, data in vehicle_section.items():
if isinstance(data, list):
max_data_rows = max(max_data_rows, len(data))
print(f" π Need to populate {max_data_rows} data rows")
# Process data rows
for data_row_index in range(max_data_rows):
table_row_idx = header_row_idx + 1 + data_row_index
if table_row_idx >= len(table.rows):
print(f" β οΈ Row {table_row_idx + 1} doesn't exist - table only has {len(table.rows)} rows")
print(f" β Adding new row for vehicle {data_row_index + 1}")
new_row = table.add_row()
print(f" β
Successfully added row {len(table.rows)} to the table")
row = table.rows[table_row_idx]
print(f" π Processing data row {table_row_idx + 1} (vehicle {data_row_index + 1})")
for col_idx, json_key in column_mapping.items():
if col_idx < len(row.cells):
cell = row.cells[col_idx]
column_data = vehicle_section.get(json_key, [])
if isinstance(column_data, list) and data_row_index < len(column_data):
replacement_value = str(column_data[data_row_index])
cell_text = get_clean_text(cell)
if has_red_text(cell) or not cell_text.strip():
if not cell_text.strip():
cell.text = replacement_value
replacements_made += 1
print(f" -> Added '{replacement_value}' to empty cell (column '{json_key}')")
else:
cell_replacements = replace_red_text_in_cell(cell, replacement_value)
replacements_made += cell_replacements
if cell_replacements > 0:
print(f" -> Replaced red text with '{replacement_value}' (column '{json_key}')")
return replacements_made
def handle_print_accreditation_section(table, flat_json):
"""Your original function (unchanged)"""
replacements_made = 0
print_data = flat_json.get("print accreditation name.print accreditation name", [])
if not isinstance(print_data, list) or len(print_data) < 2:
return 0
name_value = print_data[0]
position_value = print_data[1]
print(f" π Print accreditation data: Name='{name_value}', Position='{position_value}'")
for row_idx, row in enumerate(table.rows):
if len(row.cells) >= 2:
cell1_text = get_clean_text(row.cells[0]).lower()
cell2_text = get_clean_text(row.cells[1]).lower()
if "print name" in cell1_text and "position title" in cell2_text:
print(f" π Found header row {row_idx + 1}: '{cell1_text}' | '{cell2_text}'")
if row_idx + 1 < len(table.rows):
data_row = table.rows[row_idx + 1]
if len(data_row.cells) >= 2:
if has_red_text(data_row.cells[0]):
cell_replacements = replace_red_text_in_cell(data_row.cells[0], name_value)
replacements_made += cell_replacements
if cell_replacements > 0:
print(f" β
Replaced Print Name: '{name_value}'")
if has_red_text(data_row.cells[1]):
cell_replacements = replace_red_text_in_cell(data_row.cells[1], position_value)
replacements_made += cell_replacements
if cell_replacements > 0:
print(f" β
Replaced Position Title: '{position_value}'")
break
return replacements_made
def process_single_column_sections(cell, field_name, flat_json):
"""Your original function (unchanged)"""
json_value = find_matching_json_value(field_name, flat_json)
if json_value is not None:
replacement_text = get_value_as_string(json_value, field_name)
if isinstance(json_value, list) and len(json_value) > 1:
replacement_text = "\n".join(str(item) for item in json_value)
if has_red_text(cell):
print(f" β
Replacing red text in single-column section: '{field_name}'")
print(f" β
Replacement text:\n{replacement_text}")
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
if cell_replacements > 0:
print(f" -> Replaced with: '{replacement_text[:100]}...'")
return cell_replacements
return 0
# π― FINAL FIX 1: Add this function to handle Attendance List (unchanged)
def handle_attendance_list_fix(table, flat_json):
"""FINAL FIX: Handle Attendance List table specifically"""
replacements_made = 0
# Look for attendance list table
for row_idx, row in enumerate(table.rows):
if len(row.cells) >= 1:
cell_text = get_clean_text(row.cells[0]).lower()
# Check if this is the attendance list header
if "attendance list" in cell_text and "names and position titles" in cell_text:
print(f" π― FINAL FIX: Attendance List table detected at row {row_idx + 1}")
# The content should be in the same cell, look for red text
if has_red_text(row.cells[0]):
# Try to find attendance list data
attendance_value = None
for field_attempt in ["Attendance List (Names and Position Titles)", "attendance list", "Attendance List"]:
attendance_value = find_matching_json_value(field_attempt, flat_json)
if attendance_value is not None:
break
if attendance_value is not None:
attendance_text = get_value_as_string(attendance_value)
# Handle list format for attendance
if isinstance(attendance_value, list):
attendance_text = "\n".join(str(item) for item in attendance_value)
cell_replacements = replace_red_text_in_cell(row.cells[0], attendance_text)
replacements_made += cell_replacements
print(f" β
Fixed Attendance List: '{attendance_text[:50]}...'")
break # Found the table, stop looking
return replacements_made
# π― FINAL FIX 2: Generic Management Summary fix for ALL types (Mass, Fatigue, Maintenance)
def handle_management_summary_fix(cell, flat_json):
"""FINAL FIX: Handle ANY Management Summary section (Mass/Fatigue/Maintenance) - RED TEXT ONLY"""
if not has_red_text(cell):
return 0
# Check if this cell contains any Management Summary
cell_text = get_clean_text(cell).lower()
# Detect which type of management summary this is
management_type = None
if "mass management" in cell_text and "summary" in cell_text:
management_type = "Mass Management"
elif "fatigue management" in cell_text and "summary" in cell_text:
management_type = "Fatigue Management"
elif "maintenance management" in cell_text and "summary" in cell_text:
management_type = "Maintenance Management"
if not management_type:
return 0
print(f" π― FINAL FIX: {management_type} Summary processing - RED TEXT ONLY")
# ONLY process red text segments, not the entire cell text
red_segments = extract_red_text_segments(cell)
replacements_made = 0
# Try to replace ONLY the red text segments
for segment in red_segments:
segment_text = segment['text'].strip()
if not segment_text:
continue
print(f" π Processing red text segment: '{segment_text[:50]}...'")
# Try multiple variations based on the management type
summary_value = None
field_attempts = [
f"{management_type} Summary of Audit findings",
f"{management_type} Summary",
f"{management_type.lower()} summary",
management_type.lower(),
segment_text # Also try the exact red text
]
# Also try variations without "Management"
base_type = management_type.replace(" Management", "")
field_attempts.extend([
f"{base_type} Management Summary of Audit findings",
f"{base_type} Summary of Audit findings",
f"{base_type} Summary",
f"{base_type.lower()} summary"
])
for field_attempt in field_attempts:
summary_value = find_matching_json_value(field_attempt, flat_json)
if summary_value is not None:
print(f" β
Found match with field: '{field_attempt}'")
break
if summary_value is not None:
replacement_text = get_value_as_string(summary_value, segment_text)
if isinstance(summary_value, list):
replacement_text = "\n".join(str(item) for item in summary_value if str(item).strip())
success = replace_single_segment(segment, replacement_text)
if success:
replacements_made += 1
print(f" β
Fixed {management_type} Summary segment: '{segment_text[:30]}...' -> '{replacement_text[:30]}...'")
else:
print(f" β No match found for red text: '{segment_text[:30]}...'")
# If no individual segment matches, try combined approach on red text only
if replacements_made == 0 and red_segments:
combined_red_text = " ".join(seg['text'] for seg in red_segments).strip()
print(f" π Trying combined red text match: '{combined_red_text[:50]}...'")
# Try combined text matching with all field variations
field_attempts = [
f"{management_type} Summary of Audit findings",
f"{management_type} Summary",
f"{management_type.lower()} summary",
combined_red_text
]
base_type = management_type.replace(" Management", "")
field_attempts.extend([
f"{base_type} Management Summary of Audit findings",
f"{base_type} Summary of Audit findings",
f"{base_type} Summary"
])
for field_attempt in field_attempts:
summary_value = find_matching_json_value(field_attempt, flat_json)
if summary_value is not None:
replacement_text = get_value_as_string(summary_value, combined_red_text)
if isinstance(summary_value, list):
replacement_text = "\n".join(str(item) for item in summary_value if str(item).strip())
replacements_made = replace_all_red_segments(red_segments, replacement_text)
print(f" β
Fixed {management_type} Summary combined red text with field: '{field_attempt}'")
break
return replacements_made
def process_tables(document, flat_json):
"""Your original function with ALL surgical fixes added"""
replacements_made = 0
for table_idx, table in enumerate(document.tables):
print(f"\nπ Processing table {table_idx + 1}:")
# Your original logic
table_text = ""
for row in table.rows[:3]:
for cell in row.cells:
table_text += get_clean_text(cell).lower() + " "
# Enhanced vehicle registration detection
vehicle_indicators = ["registration number", "sub-contractor", "weight verification", "rfs suspension"]
indicator_count = sum(1 for indicator in vehicle_indicators if indicator in table_text)
if indicator_count >= 2:
print(f" π Detected Vehicle Registration table")
vehicle_replacements = handle_vehicle_registration_table(table, flat_json)
replacements_made += vehicle_replacements
continue
# π― FINAL FIX 1: Enhanced attendance list detection
if "attendance list" in table_text and "names and position titles" in table_text:
print(f" π₯ Detected Attendance List table")
attendance_replacements = handle_attendance_list_fix(table, flat_json)
replacements_made += attendance_replacements
continue
# Enhanced print accreditation detection
print_accreditation_indicators = ["print name", "position title"]
indicator_count = sum(1 for indicator in print_accreditation_indicators if indicator in table_text)
if indicator_count >= 1:
print(f" π Detected Print Accreditation table")
print_accreditation_replacements = handle_print_accreditation_section(table, flat_json)
replacements_made += print_accreditation_replacements
continue
# Your existing row processing
for row_idx, row in enumerate(table.rows):
if len(row.cells) < 1:
continue
key_cell = row.cells[0]
key_text = get_clean_text(key_cell)
if not key_text:
continue
print(f" π Row {row_idx + 1}: Key = '{key_text}'")
json_value = find_matching_json_value(key_text, flat_json)
if json_value is not None:
replacement_text = get_value_as_string(json_value, key_text)
# Enhanced ACN handling
if ("australian company number" in key_text.lower() or "company number" in key_text.lower()) and isinstance(json_value, list):
cell_replacements = handle_australian_company_number(row, json_value)
replacements_made += cell_replacements
# Enhanced section header handling
elif ("attendance list" in key_text.lower() or "nature of" in key_text.lower()) and row_idx + 1 < len(table.rows):
print(f" β
Section header detected, checking next row for content...")
next_row = table.rows[row_idx + 1]
for cell_idx, cell in enumerate(next_row.cells):
if has_red_text(cell):
print(f" β
Found red text in next row, cell {cell_idx + 1}")
if isinstance(json_value, list):
replacement_text = "\n".join(str(item) for item in json_value)
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
replacements_made += cell_replacements
if cell_replacements > 0:
print(f" -> Replaced section content with: '{replacement_text[:100]}...'")
elif len(row.cells) == 1 or (len(row.cells) > 1 and not any(has_red_text(row.cells[i]) for i in range(1, len(row.cells)))):
if has_red_text(key_cell):
cell_replacements = process_single_column_sections(key_cell, key_text, flat_json)
replacements_made += cell_replacements
else:
for cell_idx in range(1, len(row.cells)):
value_cell = row.cells[cell_idx]
if has_red_text(value_cell):
print(f" β
Found red text in column {cell_idx + 1}")
cell_replacements = replace_red_text_in_cell(value_cell, replacement_text)
replacements_made += cell_replacements
else:
# Enhanced fallback processing for unmatched keys
if len(row.cells) == 1 and has_red_text(key_cell):
red_text = ""
for paragraph in key_cell.paragraphs:
for run in paragraph.runs:
if is_red(run):
red_text += run.text
if red_text.strip():
section_value = find_matching_json_value(red_text.strip(), flat_json)
if section_value is not None:
section_replacement = get_value_as_string(section_value, red_text.strip())
cell_replacements = replace_red_text_in_cell(key_cell, section_replacement)
replacements_made += cell_replacements
# Enhanced red text processing for all cells
for cell_idx in range(len(row.cells)):
cell = row.cells[cell_idx]
if has_red_text(cell):
cell_replacements = handle_multiple_red_segments_in_cell(cell, flat_json)
replacements_made += cell_replacements
# π― SURGICAL FIX 1: Only if no replacements were made
if cell_replacements == 0:
surgical_fix = handle_nature_business_multiline_fix(cell, flat_json)
replacements_made += surgical_fix
# π― FINAL FIX 2: Only if still no replacements were made, try ANY Management Summary fix
if cell_replacements == 0 and surgical_fix == 0:
management_summary_fix = handle_management_summary_fix(cell, flat_json)
replacements_made += management_summary_fix
# π― SURGICAL FIX 3: Handle Operator Declaration tables (only check last few tables)
print(f"\nπ― SURGICAL FIX: Checking for Operator/Auditor Declaration tables...")
for table in document.tables[-3:]: # Only check last 3 tables
if len(table.rows) <= 4: # Only small tables
declaration_fix = handle_operator_declaration_fix(table, flat_json)
replacements_made += declaration_fix
return replacements_made
def process_paragraphs(document, flat_json):
"""Your original function (unchanged)"""
replacements_made = 0
print(f"\nπ Processing paragraphs:")
for para_idx, paragraph in enumerate(document.paragraphs):
red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
if red_runs:
full_text = paragraph.text.strip()
red_text_only = "".join(run.text for run in red_runs).strip()
print(f" π Paragraph {para_idx + 1}: Found red text: '{red_text_only}'")
# Your existing matching logic
json_value = find_matching_json_value(red_text_only, flat_json)
if json_value is None:
# Enhanced pattern matching for signatures and dates
if "AUDITOR SIGNATURE" in red_text_only.upper() or "DATE" in red_text_only.upper():
json_value = find_matching_json_value("auditor signature", flat_json)
elif "OPERATOR SIGNATURE" in red_text_only.upper():
json_value = find_matching_json_value("operator signature", flat_json)
if json_value is not None:
replacement_text = get_value_as_string(json_value)
print(f" β
Replacing red text with: '{replacement_text}'")
red_runs[0].text = replacement_text
red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
for run in red_runs[1:]:
run.text = ''
replacements_made += 1
return replacements_made
def process_headings(document, flat_json):
"""Your original function (unchanged)"""
replacements_made = 0
print(f"\nπ Processing headings:")
paragraphs = document.paragraphs
for para_idx, paragraph in enumerate(paragraphs):
paragraph_text = paragraph.text.strip()
if not paragraph_text:
continue
# Enhanced heading detection
matched_heading = None
for category, patterns in HEADING_PATTERNS.items():
for pattern in patterns:
if re.search(pattern, paragraph_text, re.IGNORECASE):
matched_heading = pattern
break
if matched_heading:
break
if matched_heading:
print(f" π Found heading at paragraph {para_idx + 1}: '{paragraph_text}'")
# Check current heading paragraph
if has_red_text_in_paragraph(paragraph):
print(f" π΄ Found red text in heading itself")
heading_replacements = process_red_text_in_paragraph(paragraph, paragraph_text, flat_json)
replacements_made += heading_replacements
# Enhanced: Look further ahead for related content
for next_para_offset in range(1, 6): # Extended range
next_para_idx = para_idx + next_para_offset
if next_para_idx >= len(paragraphs):
break
next_paragraph = paragraphs[next_para_idx]
next_text = next_paragraph.text.strip()
if not next_text:
continue
# Stop if we hit another heading
is_another_heading = False
for category, patterns in HEADING_PATTERNS.items():
for pattern in patterns:
if re.search(pattern, next_text, re.IGNORECASE):
is_another_heading = True
break
if is_another_heading:
break
if is_another_heading:
break
# Process red text with enhanced context
if has_red_text_in_paragraph(next_paragraph):
print(f" π΄ Found red text in paragraph {next_para_idx + 1} after heading: '{next_text[:50]}...'")
context_replacements = process_red_text_in_paragraph(
next_paragraph,
paragraph_text,
flat_json
)
replacements_made += context_replacements
return replacements_made
def has_red_text_in_paragraph(paragraph):
"""Your original function (unchanged)"""
for run in paragraph.runs:
if is_red(run) and run.text.strip():
return True
return False
def process_red_text_in_paragraph(paragraph, context_text, flat_json):
"""Your original function (unchanged)"""
replacements_made = 0
red_text_segments = []
for run in paragraph.runs:
if is_red(run) and run.text.strip():
red_text_segments.append(run.text.strip())
if not red_text_segments:
return 0
combined_red_text = " ".join(red_text_segments).strip()
print(f" π Red text found: '{combined_red_text}'")
json_value = None
# Strategy 1: Direct matching
json_value = find_matching_json_value(combined_red_text, flat_json)
# Strategy 2: Enhanced context-based matching
if json_value is None:
if "NHVAS APPROVED AUDITOR" in context_text.upper():
auditor_fields = ["auditor name", "auditor", "nhvas auditor", "approved auditor", "print name"]
for field in auditor_fields:
json_value = find_matching_json_value(field, flat_json)
if json_value is not None:
print(f" β
Found auditor match with field: '{field}'")
break
elif "OPERATOR DECLARATION" in context_text.upper():
operator_fields = ["operator name", "operator", "company name", "organisation name", "print name"]
for field in operator_fields:
json_value = find_matching_json_value(field, flat_json)
if json_value is not None:
print(f" β
Found operator match with field: '{field}'")
break
# Strategy 3: Enhanced context combination
if json_value is None:
context_queries = [
f"{context_text} {combined_red_text}",
combined_red_text,
context_text
]
for query in context_queries:
json_value = find_matching_json_value(query, flat_json)
if json_value is not None:
print(f" β
Found match with combined query: '{query[:50]}...'")
break
# Replace if match found
if json_value is not None:
replacement_text = get_value_as_string(json_value, combined_red_text)
red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
if red_runs:
red_runs[0].text = replacement_text
red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
for run in red_runs[1:]:
run.text = ''
replacements_made = 1
print(f" β
Replaced with: '{replacement_text}'")
else:
print(f" β No match found for red text: '{combined_red_text}'")
return replacements_made
def process_hf(json_file, docx_file, output_file):
"""Your original main function (unchanged)"""
try:
# Load JSON
if hasattr(json_file, "read"):
json_data = json.load(json_file)
else:
with open(json_file, 'r', encoding='utf-8') as f:
json_data = json.load(f)
flat_json = flatten_json(json_data)
print("π Available JSON keys (sample):")
for i, (key, value) in enumerate(sorted(flat_json.items())):
if i < 10:
print(f" - {key}: {value}")
print(f" ... and {len(flat_json) - 10} more keys\n")
# Load DOCX
if hasattr(docx_file, "read"):
doc = Document(docx_file)
else:
doc = Document(docx_file)
# Your original processing with surgical fixes
print("π Starting processing with minimal surgical fixes...")
table_replacements = process_tables(doc, flat_json)
paragraph_replacements = process_paragraphs(doc, flat_json)
heading_replacements = process_headings(doc, flat_json)
total_replacements = table_replacements + paragraph_replacements + heading_replacements
# Save output
if hasattr(output_file, "write"):
doc.save(output_file)
else:
doc.save(output_file)
print(f"\nβ
Document saved as: {output_file}")
print(f"β
Total replacements: {total_replacements}")
print(f" π Tables: {table_replacements}")
print(f" π Paragraphs: {paragraph_replacements}")
print(f" π Headings: {heading_replacements}")
print(f"π Processing complete!")
except FileNotFoundError as e:
print(f"β File not found: {e}")
except Exception as e:
print(f"β Error: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
import sys
if len(sys.argv) != 4:
print("Usage: python pipeline.py <input_docx> <updated_json> <output_docx>")
exit(1)
docx_path = sys.argv[1]
json_path = sys.argv[2]
output_path = sys.argv[3]
process_hf(json_path, docx_path, output_path) |