File size: 37,671 Bytes
e8b46b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b2b3a8
e8b46b5
 
 
 
5b2b3a8
e8b46b5
 
 
 
 
5b2b3a8
e8b46b5
 
5b2b3a8
e8b46b5
5b2b3a8
 
e8b46b5
 
5b2b3a8
 
 
 
e8b46b5
5b2b3a8
 
 
 
 
e8b46b5
 
5b2b3a8
e8b46b5
5b2b3a8
 
 
e8b46b5
 
5b2b3a8
e8b46b5
 
 
5b2b3a8
 
 
 
e8b46b5
 
5b2b3a8
 
 
 
 
 
 
 
 
 
 
e8b46b5
5b2b3a8
 
 
e8b46b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b2b3a8
 
 
e8b46b5
5b2b3a8
 
 
 
 
e8b46b5
5b2b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8b46b5
5b2b3a8
 
e8b46b5
5b2b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8b46b5
5b2b3a8
 
e8b46b5
 
5b2b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8b46b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b2b3a8
 
 
 
 
e8b46b5
5b2b3a8
 
 
 
 
 
e8b46b5
 
5b2b3a8
 
e8b46b5
5b2b3a8
e8b46b5
5b2b3a8
 
 
 
 
e8b46b5
 
 
 
 
5b2b3a8
 
 
 
 
 
e8b46b5
 
 
 
 
 
 
 
 
f992eb5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
import json
from docx import Document
from docx.shared import RGBColor
import re

def load_json(filepath):
    with open(filepath, 'r') as file:
        return json.load(file)

def flatten_json(y, prefix=''):
    out = {}
    for key, val in y.items():
        new_key = f"{prefix}.{key}" if prefix else key
        if isinstance(val, dict):
            out.update(flatten_json(val, new_key))
        else:
            out[new_key] = val
            out[key] = val
    return out

def is_red(run):
    color = run.font.color
    return color and (color.rgb == RGBColor(255, 0, 0) or getattr(color, "theme_color", None) == 1)

def get_value_as_string(value, field_name=""):
    if isinstance(value, list):
        if len(value) == 0:
            return ""
        elif len(value) == 1:
            return str(value[0])
        else:
            if "australian company number" in field_name.lower() or "company number" in field_name.lower():
                return value
            else:
                return " ".join(str(v) for v in value)
    else:
        return str(value)

def find_matching_json_value(field_name, flat_json):
    """Completely dynamic matching without manual mappings"""
    field_name = field_name.strip()
    
    # Try exact match first
    if field_name in flat_json:
        print(f"    βœ… Direct match found for key '{field_name}'")
        return flat_json[field_name]
    
    # Try case-insensitive exact match
    for key, value in flat_json.items():
        if key.lower() == field_name.lower():
            print(f"    βœ… Case-insensitive match found for key '{field_name}' with JSON key '{key}'")
            return value
    
    # Try suffix matching (for nested keys like "section.field")
    for key, value in flat_json.items():
        if '.' in key and key.split('.')[-1].lower() == field_name.lower():
            print(f"    βœ… Suffix match found for key '{field_name}' with JSON key '{key}'")
            return value
    
    # Try partial matching - remove parentheses and special chars
    clean_field = re.sub(r'[^\w\s]', ' ', field_name.lower()).strip()
    clean_field = re.sub(r'\s+', ' ', clean_field)  # Multiple spaces to single
    
    for key, value in flat_json.items():
        clean_key = re.sub(r'[^\w\s]', ' ', key.lower()).strip()
        clean_key = re.sub(r'\s+', ' ', clean_key)
        
        if clean_field == clean_key:
            print(f"    βœ… Clean match found for key '{field_name}' with JSON key '{key}'")
            return value
    
    # Word-based fuzzy matching
    field_words = set(word.lower() for word in re.findall(r'\b\w+\b', field_name) if len(word) > 2)
    if not field_words:
        return None
    
    best_match = None
    best_score = 0
    best_key = None
    
    for key, value in flat_json.items():
        key_words = set(word.lower() for word in re.findall(r'\b\w+\b', key) if len(word) > 2)
        if not key_words:
            continue
            
        # Calculate similarity score
        common_words = field_words.intersection(key_words)
        if common_words:
            # Use Jaccard similarity: intersection / union
            similarity = len(common_words) / len(field_words.union(key_words))
            
            # Bonus for high word coverage in field_name
            coverage = len(common_words) / len(field_words)
            final_score = (similarity * 0.6) + (coverage * 0.4)
            
            if final_score > best_score:
                best_score = final_score
                best_match = value
                best_key = key
    
    if best_match and best_score >= 0.3:  # Lowered threshold for more matches
        print(f"    βœ… Fuzzy match found for key '{field_name}' with JSON key '{best_key}' (score: {best_score:.2f})")
        return best_match
    
    print(f"    ❌ No match found for '{field_name}'")
    return None

def get_clean_text(cell):
    text = ""
    for paragraph in cell.paragraphs:
        for run in paragraph.runs:
            text += run.text
    return text.strip()

def has_red_text(cell):
    for paragraph in cell.paragraphs:
        for run in paragraph.runs:
            if is_red(run) and run.text.strip():
                return True
    return False

def extract_red_text_segments(cell):
    """Extract all red text segments from a cell with better multi-line handling"""
    red_segments = []
    
    for para_idx, paragraph in enumerate(cell.paragraphs):
        current_segment = ""
        segment_runs = []
        
        for run_idx, run in enumerate(paragraph.runs):
            if is_red(run):
                if run.text:  # Include even empty red runs for proper replacement
                    current_segment += run.text
                segment_runs.append((para_idx, run_idx, run))
            else:
                # End of current red segment
                if segment_runs:  # Changed from current_segment.strip() to segment_runs
                    red_segments.append({
                        'text': current_segment,
                        'runs': segment_runs.copy(),
                        'paragraph_idx': para_idx
                    })
                    current_segment = ""
                    segment_runs = []
        
        # Handle segment at end of paragraph
        if segment_runs:  # Changed from current_segment.strip() to segment_runs
            red_segments.append({
                'text': current_segment,
                'runs': segment_runs.copy(),
                'paragraph_idx': para_idx
            })
    
    return red_segments

def replace_red_text_in_cell(cell, replacement_text):
    """Enhanced cell replacement with better multi-line and multi-segment handling"""
    red_segments = extract_red_text_segments(cell)
    
    if not red_segments:
        return 0
    
    # If we have multiple segments, try to match each individually first
    if len(red_segments) > 1:
        replacements_made = 0
        for segment in red_segments:
            segment_text = segment['text'].strip()
            if segment_text:
                # Try to find specific match for this segment
                # This would require access to flat_json, so we'll handle it in the calling function
                pass
        
        # If no individual matches, replace all with the single replacement
        if replacements_made == 0:
            return replace_all_red_segments(red_segments, replacement_text)
    
    # Single segment or fallback - replace all red text with the replacement
    return replace_all_red_segments(red_segments, replacement_text)

def replace_all_red_segments(red_segments, replacement_text):
    """Replace all red segments with the replacement text"""
    if not red_segments:
        return 0
    
    # Handle multi-line replacement text
    if '\n' in replacement_text:
        replacement_lines = replacement_text.split('\n')
    else:
        replacement_lines = [replacement_text]
    
    replacements_made = 0
    
    # Replace first segment with first line
    if red_segments and replacement_lines:
        first_segment = red_segments[0]
        if first_segment['runs']:
            first_run = first_segment['runs'][0][2]  # (para_idx, run_idx, run)
            first_run.text = replacement_lines[0]
            first_run.font.color.rgb = RGBColor(0, 0, 0)
            replacements_made = 1
            
            # Clear other runs in first segment
            for _, _, run in first_segment['runs'][1:]:
                run.text = ''
    
    # Clear all other red segments
    for segment in red_segments[1:]:
        for _, _, run in segment['runs']:
            run.text = ''
    
    # If we have multiple lines, add them to the same paragraph or create new runs
    if len(replacement_lines) > 1 and red_segments:
        try:
            # Get the paragraph that contains the first run
            first_run = red_segments[0]['runs'][0][2]
            paragraph = first_run.element.getparent()  # Get the paragraph element
            
            # Add remaining lines as new runs in the same paragraph with line breaks
            for line in replacement_lines[1:]:
                if line.strip():  # Only add non-empty lines
                    # Add a line break run
                    from docx.oxml import OxmlElement, ns
                    br = OxmlElement('w:br')
                    first_run.element.append(br)
                    
                    # Add the text as a new run
                    new_run = paragraph.add_run(line.strip())
                    new_run.font.color.rgb = RGBColor(0, 0, 0)
        except:
            # If we can't add line breaks, just put everything in the first run
            if red_segments and red_segments[0]['runs']:
                first_run = red_segments[0]['runs'][0][2]
                # Join all lines with spaces instead of line breaks
                first_run.text = ' '.join(replacement_lines)
                first_run.font.color.rgb = RGBColor(0, 0, 0)
    
    return replacements_made

def handle_multiple_red_segments_in_cell(cell, flat_json):
    """Handle cells with multiple red text segments dynamically"""
    red_segments = extract_red_text_segments(cell)
    
    if not red_segments:
        return 0
    
    print(f"      πŸ” Found {len(red_segments)} red text segments in cell")
    replacements_made = 0
    unmatched_segments = []
    
    # Try to match each segment individually
    for i, segment in enumerate(red_segments):
        segment_text = segment['text'].strip()
        if not segment_text:
            continue
            
        print(f"        Segment {i+1}: '{segment_text[:50]}...'")
        
        # Find JSON match for this segment
        json_value = find_matching_json_value(segment_text, flat_json)
        
        if json_value is not None:
            replacement_text = get_value_as_string(json_value, segment_text)
            
            # Handle list values
            if isinstance(json_value, list) and len(json_value) > 1:
                replacement_text = "\n".join(str(item) for item in json_value if str(item).strip())
            
            success = replace_single_segment(segment, replacement_text)
            if success:
                replacements_made += 1
                print(f"        βœ… Replaced segment '{segment_text[:30]}...' with '{replacement_text[:30]}...'")
        else:
            unmatched_segments.append(segment)
            print(f"        ⏳ No individual match for segment '{segment_text[:30]}...'")
    
    # If we have unmatched segments, try to match the combined text
    if unmatched_segments and replacements_made == 0:
        combined_text = " ".join(seg['text'] for seg in red_segments).strip()
        print(f"      πŸ”„ Trying combined text match: '{combined_text[:50]}...'")
        
        json_value = find_matching_json_value(combined_text, flat_json)
        if json_value is not None:
            replacement_text = get_value_as_string(json_value, combined_text)
            if isinstance(json_value, list) and len(json_value) > 1:
                replacement_text = "\n".join(str(item) for item in json_value if str(item).strip())
            
            # Replace all segments with the combined replacement
            replacements_made = replace_all_red_segments(red_segments, replacement_text)
            print(f"      βœ… Replaced combined text with '{replacement_text[:50]}...'")
    
    return replacements_made

def replace_single_segment(segment, replacement_text):
    """Replace a single red text segment"""
    if not segment['runs']:
        return False
    
    # Replace first run with new text
    first_run = segment['runs'][0][2]  # (para_idx, run_idx, run)
    first_run.text = replacement_text
    first_run.font.color.rgb = RGBColor(0, 0, 0)
    
    # Clear remaining runs in the segment
    for _, _, run in segment['runs'][1:]:
        run.text = ''
    
    return True

def process_tables(document, flat_json):
    """Enhanced table processing with better dynamic detection"""
    replacements_made = 0
    
    for table_idx, table in enumerate(document.tables):
        print(f"\nπŸ” Processing table {table_idx + 1}:")
        
        # Dynamically detect table type by analyzing content
        table_type = detect_table_type(table)
        print(f"    πŸ“‹ Detected table type: {table_type}")
        
        if table_type == "vehicle_registration":
            vehicle_replacements = handle_vehicle_registration_table(table, flat_json)
            replacements_made += vehicle_replacements
            continue
        elif table_type == "print_accreditation":
            print_replacements = handle_print_accreditation_section(table, flat_json)
            replacements_made += print_replacements
            continue
        
        # Process as regular key-value table
        for row_idx, row in enumerate(table.rows):
            if len(row.cells) < 1:
                continue
                
            # Process each cell for red text
            for cell_idx, cell in enumerate(row.cells):
                if has_red_text(cell):
                    cell_replacements = handle_multiple_red_segments_in_cell(cell, flat_json)
                    replacements_made += cell_replacements
                    
                    # If no individual segment matches found, try context-based matching
                    if cell_replacements == 0:
                        context_replacements = try_context_based_replacement(cell, row, table, flat_json)
                        replacements_made += context_replacements
    
    return replacements_made

def detect_table_type(table):
    """Dynamically detect table type based on content"""
    # Get text from first few rows
    sample_text = ""
    for row in table.rows[:3]:
        for cell in row.cells:
            sample_text += get_clean_text(cell).lower() + " "
    
    # Vehicle registration indicators
    vehicle_indicators = ["registration number", "sub-contractor", "weight verification", "rfs suspension"]
    vehicle_score = sum(1 for indicator in vehicle_indicators if indicator in sample_text)
    
    # Print accreditation indicators
    print_indicators = ["print name", "position title"]
    print_score = sum(1 for indicator in print_indicators if indicator in sample_text)
    
    if vehicle_score >= 3:
        return "vehicle_registration"
    elif print_score >= 2:
        return "print_accreditation"
    else:
        return "key_value"

def try_context_based_replacement(cell, row, table, flat_json):
    """Try to find replacement using context from surrounding cells"""
    replacements_made = 0
    
    # Get context from row headers/labels
    row_context = ""
    if len(row.cells) > 1:
        # First cell might be a label
        first_cell_text = get_clean_text(row.cells[0]).strip()
        if first_cell_text and not has_red_text(row.cells[0]):
            row_context = first_cell_text
    
    # Get red text from the cell
    red_segments = extract_red_text_segments(cell)
    for segment in red_segments:
        red_text = segment['text'].strip()
        if not red_text:
            continue
        
        # Try combining context with red text
        if row_context:
            context_queries = [
                f"{row_context} {red_text}",
                f"{row_context}",
                red_text
            ]
            
            for query in context_queries:
                json_value = find_matching_json_value(query, flat_json)
                if json_value is not None:
                    replacement_text = get_value_as_string(json_value, query)
                    success = replace_single_segment(segment, replacement_text)
                    if success:
                        replacements_made += 1
                        print(f"      βœ… Context-based replacement: '{query}' -> '{replacement_text[:30]}...'")
                        break
    
    return replacements_made

def handle_australian_company_number(row, company_numbers):
    replacements_made = 0
    for i, digit in enumerate(company_numbers):
        cell_idx = i + 1
        if cell_idx < len(row.cells):
            cell = row.cells[cell_idx]
            if has_red_text(cell):
                cell_replacements = replace_red_text_in_cell(cell, str(digit))
                replacements_made += cell_replacements
                print(f"      -> Placed digit '{digit}' in cell {cell_idx + 1}")
    return replacements_made

def handle_vehicle_registration_table(table, flat_json):
    """Handle the Vehicle Registration Numbers table with column-based data"""
    replacements_made = 0
    
    # Look for the vehicle registration data in the flattened JSON
    vehicle_section = None
    
    # Try to find the vehicle registration section
    for key, value in flat_json.items():
        if "vehicle registration numbers of records examined" in key.lower():
            if isinstance(value, dict):  # This should be the nested structure
                vehicle_section = value
                print(f"    βœ… Found vehicle data in key: '{key}'")
                break
    
    if not vehicle_section:
        # Try alternative approach - look for individual column keys
        potential_columns = {}
        for key, value in flat_json.items():
            if any(col_name in key.lower() for col_name in ["registration number", "sub-contractor", "weight verification", "rfs suspension"]):
                # Extract the column name from the flattened key
                if "." in key:
                    column_name = key.split(".")[-1]
                else:
                    column_name = key
                potential_columns[column_name] = value
        
        if potential_columns:
            vehicle_section = potential_columns
            print(f"    βœ… Found vehicle data from flattened keys: {list(vehicle_section.keys())}")
        else:
            print(f"    ❌ Vehicle registration data not found in JSON")
            return 0
    
    print(f"    βœ… Found vehicle registration data with {len(vehicle_section)} columns")
    
    # Find header row (usually row 0 or 1)
    header_row_idx = -1
    header_row = None
    
    for row_idx, row in enumerate(table.rows):
        row_text = "".join(get_clean_text(cell).lower() for cell in row.cells)
        if "registration" in row_text and "number" in row_text:
            header_row_idx = row_idx
            header_row = row
            break
    
    if header_row_idx == -1:
        print(f"    ❌ Could not find header row in vehicle table")
        return 0
    
    print(f"    βœ… Found header row at index {header_row_idx}")
    
    # Create mapping between column indices and JSON keys
    column_mapping = {}
    for col_idx, cell in enumerate(header_row.cells):
        header_text = get_clean_text(cell).strip()
        if not header_text or header_text.lower() == "no.":
            continue
            
        # Try to match header text with JSON keys
        best_match = None
        best_score = 0
        
        # Normalize header text for better matching
        normalized_header = header_text.lower().replace("(", " (").replace(")", ") ").strip()
        
        for json_key in vehicle_section.keys():
            normalized_json = json_key.lower().strip()
            
            # Try exact match first (after normalization)
            if normalized_header == normalized_json:
                best_match = json_key
                best_score = 1.0
                break
            
            # Try word-based matching
            header_words = set(word.lower() for word in normalized_header.split() if len(word) > 2)
            json_words = set(word.lower() for word in normalized_json.split() if len(word) > 2)
            
            if header_words and json_words:
                common_words = header_words.intersection(json_words)
                score = len(common_words) / max(len(header_words), len(json_words))
                
                if score > best_score and score >= 0.3:  # At least 30% match
                    best_score = score
                    best_match = json_key
            
            # Try substring matching for cases like "RegistrationNumber" vs "Registration Number"
            header_clean = normalized_header.replace(" ", "").replace("-", "").replace("(", "").replace(")", "")
            json_clean = normalized_json.replace(" ", "").replace("-", "").replace("(", "").replace(")", "")
            
            if header_clean in json_clean or json_clean in header_clean:
                if len(header_clean) > 5 and len(json_clean) > 5:  # Only for meaningful matches
                    substring_score = min(len(header_clean), len(json_clean)) / max(len(header_clean), len(json_clean))
                    if substring_score > best_score and substring_score >= 0.6:
                        best_score = substring_score
                        best_match = json_key
        
        if best_match:
            column_mapping[col_idx] = best_match
            print(f"      πŸ“Œ Column {col_idx + 1} ('{header_text}') -> '{best_match}' (score: {best_score:.2f})")
    
    if not column_mapping:
        print(f"    ❌ No column mappings found")
        return 0
    
    # Determine how many data rows we need based on the JSON arrays
    max_data_rows = 0
    for json_key, data in vehicle_section.items():
        if isinstance(data, list):
            max_data_rows = max(max_data_rows, len(data))
    
    print(f"    πŸ“Œ Need to populate {max_data_rows} data rows")
    
    # Process all required data rows
    for data_row_index in range(max_data_rows):
        table_row_idx = header_row_idx + 1 + data_row_index
        
        # Check if this table row exists, if not, add it
        if table_row_idx >= len(table.rows):
            print(f"    ⚠️ Row {table_row_idx + 1} doesn't exist - table only has {len(table.rows)} rows")
            print(f"    βž• Adding new row for vehicle {data_row_index + 1}")
            
            # Add a new row to the table
            new_row = table.add_row()
            print(f"    βœ… Successfully added row {len(table.rows)} to the table")
            
        row = table.rows[table_row_idx]
        print(f"    πŸ“Œ Processing data row {table_row_idx + 1} (vehicle {data_row_index + 1})")
        
        # Fill in data for each mapped column
        for col_idx, json_key in column_mapping.items():
            if col_idx < len(row.cells):
                cell = row.cells[col_idx]
                
                # Get the data for this column and row
                column_data = vehicle_section.get(json_key, [])
                if isinstance(column_data, list) and data_row_index < len(column_data):
                    replacement_value = str(column_data[data_row_index])
                    
                    # Check if cell has red text or is empty (needs data)
                    cell_text = get_clean_text(cell)
                    if has_red_text(cell) or not cell_text.strip():
                        # If cell is empty, add the text directly
                        if not cell_text.strip():
                            cell.text = replacement_value
                            replacements_made += 1
                            print(f"      -> Added '{replacement_value}' to empty cell (column '{json_key}')")
                        else:
                            # If cell has red text, replace it
                            cell_replacements = replace_red_text_in_cell(cell, replacement_value)
                            replacements_made += cell_replacements
                            if cell_replacements > 0:
                                print(f"      -> Replaced red text with '{replacement_value}' (column '{json_key}')")
    
    return replacements_made

def handle_print_accreditation_section(table, flat_json):
    """Handle the special case of print accreditation name with 2 values"""
    replacements_made = 0
    
    # Look for the print accreditation name data
    print_data = flat_json.get("print accreditation name.print accreditation name", [])
    if not isinstance(print_data, list) or len(print_data) < 2:
        return 0
    
    name_value = print_data[0]  # "Simon Anderson"
    position_value = print_data[1]  # "Director"
    
    print(f"    πŸ“‹ Print accreditation data: Name='{name_value}', Position='{position_value}'")
    
    # Find rows with "Print Name" and "Position Title"
    for row_idx, row in enumerate(table.rows):
        if len(row.cells) >= 2:
            # Check if this row has the headers
            cell1_text = get_clean_text(row.cells[0]).lower()
            cell2_text = get_clean_text(row.cells[1]).lower()
            
            if "print name" in cell1_text and "position title" in cell2_text:
                print(f"    πŸ“ Found header row {row_idx + 1}: '{cell1_text}' | '{cell2_text}'")
                
                # Check the next row for red text to replace
                if row_idx + 1 < len(table.rows):
                    data_row = table.rows[row_idx + 1]
                    if len(data_row.cells) >= 2:
                        # Replace Print Name (first cell)
                        if has_red_text(data_row.cells[0]):
                            cell_replacements = replace_red_text_in_cell(data_row.cells[0], name_value)
                            replacements_made += cell_replacements
                            if cell_replacements > 0:
                                print(f"      βœ… Replaced Print Name: '{name_value}'")
                        
                        # Replace Position Title (second cell)  
                        if has_red_text(data_row.cells[1]):
                            cell_replacements = replace_red_text_in_cell(data_row.cells[1], position_value)
                            replacements_made += cell_replacements
                            if cell_replacements > 0:
                                print(f"      βœ… Replaced Position Title: '{position_value}'")
                
                break  # Found the section, no need to continue
    
    return replacements_made

def process_single_column_sections(cell, field_name, flat_json):
    json_value = find_matching_json_value(field_name, flat_json)
    if json_value is not None:
        replacement_text = get_value_as_string(json_value, field_name)
        if isinstance(json_value, list) and len(json_value) > 1:
            replacement_text = "\n".join(str(item) for item in json_value)
        if has_red_text(cell):
            print(f"    βœ… Replacing red text in single-column section: '{field_name}'")
            print(f"    βœ… Replacement text:\n{replacement_text}")
            cell_replacements = replace_red_text_in_cell(cell, replacement_text)
            if cell_replacements > 0:
                print(f"    -> Replaced with: '{replacement_text[:100]}...'")
                return cell_replacements
    return 0

def process_tables(document, flat_json):
    """Process tables to find key-value pairs and replace red values"""
    replacements_made = 0
    
    for table_idx, table in enumerate(document.tables):
        print(f"\nπŸ” Processing table {table_idx + 1}:")
        
        # Check if this is the vehicle registration table
        table_text = ""
        for row in table.rows[:3]:  # Check first 3 rows
            for cell in row.cells:
                table_text += get_clean_text(cell).lower() + " "
        
        # Look for vehicle registration indicators (need multiple indicators to avoid false positives)
        vehicle_indicators = ["registration number", "sub-contractor", "weight verification", "rfs suspension"]
        indicator_count = sum(1 for indicator in vehicle_indicators if indicator in table_text)
        if indicator_count >= 3:  # Require at least 3 indicators to be sure it's a vehicle table
            print(f"    πŸš— Detected Vehicle Registration table")
            vehicle_replacements = handle_vehicle_registration_table(table, flat_json)
            replacements_made += vehicle_replacements
            continue  # Skip normal processing for this table
        
        # Check if this is the print accreditation table
        print_accreditation_indicators = ["print name", "position title"]
        indicator_count = sum(1 for indicator in print_accreditation_indicators if indicator in table_text)
        if indicator_count >= 2:  # Require at least 2 indicators to be sure it's a print accreditation table
            print(f"    πŸ“‹ Detected Print Accreditation table")
            print_accreditation_replacements = handle_print_accreditation_section(table, flat_json)
            replacements_made += print_accreditation_replacements
            continue  # Skip normal processing for this table
        
        for row_idx, row in enumerate(table.rows):
            if len(row.cells) < 1:  # Skip empty rows
                continue
                
            # Get the key from the first column
            key_cell = row.cells[0]
            key_text = get_clean_text(key_cell)
            
            if not key_text:
                continue
            
            print(f"  πŸ“Œ Row {row_idx + 1}: Key = '{key_text}'")
            
            # Check if this key exists in our JSON
            json_value = find_matching_json_value(key_text, flat_json)
            
            if json_value is not None:
                replacement_text = get_value_as_string(json_value, key_text)
                
                # Special handling for Australian Company Number
                if ("australian company number" in key_text.lower() or "company number" in key_text.lower()) and isinstance(json_value, list):
                    cell_replacements = handle_australian_company_number(row, json_value)
                    replacements_made += cell_replacements
                    
                # Handle section headers (like Attendance List, Nature of Business) where content is in next row
                elif ("attendance list" in key_text.lower() or "nature of" in key_text.lower()) and row_idx + 1 < len(table.rows):
                    print(f"    βœ… Section header detected, checking next row for content...")
                    next_row = table.rows[row_idx + 1]
                    
                    # Check all cells in the next row for red text
                    for cell_idx, cell in enumerate(next_row.cells):
                        if has_red_text(cell):
                            print(f"    βœ… Found red text in next row, cell {cell_idx + 1}")
                            # For list values, join with line breaks
                            if isinstance(json_value, list):
                                replacement_text = "\n".join(str(item) for item in json_value)
                            cell_replacements = replace_red_text_in_cell(cell, replacement_text)
                            replacements_made += cell_replacements
                            if cell_replacements > 0:
                                print(f"    -> Replaced section content with: '{replacement_text[:100]}...'")
                                
                elif len(row.cells) == 1 or (len(row.cells) > 1 and not any(has_red_text(row.cells[i]) for i in range(1, len(row.cells)))):
                    if has_red_text(key_cell):
                        cell_replacements = process_single_column_sections(key_cell, key_text, flat_json)
                        replacements_made += cell_replacements
                else:
                    for cell_idx in range(1, len(row.cells)):
                        value_cell = row.cells[cell_idx]
                        if has_red_text(value_cell):
                            print(f"    βœ… Found red text in column {cell_idx + 1}")
                            cell_replacements = replace_red_text_in_cell(value_cell, replacement_text)
                            replacements_made += cell_replacements
            else:
                if len(row.cells) == 1 and has_red_text(key_cell):
                    red_text = ""
                    for paragraph in key_cell.paragraphs:
                        for run in paragraph.runs:
                            if is_red(run):
                                red_text += run.text
                    if red_text.strip():
                        section_value = find_matching_json_value(red_text.strip(), flat_json)
                        if section_value is not None:
                            section_replacement = get_value_as_string(section_value, red_text.strip())
                            cell_replacements = replace_red_text_in_cell(key_cell, section_replacement)
                            replacements_made += cell_replacements
                
                # Handle tables where red text appears in multiple columns (like contact info tables)
                for cell_idx in range(len(row.cells)):
                    cell = row.cells[cell_idx]
                    if has_red_text(cell):
                        # Get the red text from this cell
                        red_text = ""
                        for paragraph in cell.paragraphs:
                            for run in paragraph.runs:
                                if is_red(run):
                                    red_text += run.text
                        
                        if red_text.strip():
                            # Try to find a direct mapping for this red text
                            section_value = find_matching_json_value(red_text.strip(), flat_json)
                            if section_value is not None:
                                section_replacement = get_value_as_string(section_value, red_text.strip())
                                cell_replacements = replace_red_text_in_cell(cell, section_replacement)
                                replacements_made += cell_replacements
                                if cell_replacements > 0:
                                    print(f"    βœ… Replaced red text '{red_text.strip()[:30]}...' with '{section_replacement[:30]}...' in cell {cell_idx + 1}")
    
    return replacements_made

def process_paragraphs(document, flat_json):
    replacements_made = 0
    print(f"\nπŸ” Processing paragraphs:")
    for para_idx, paragraph in enumerate(document.paragraphs):
        red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
        if red_runs:
            full_text = paragraph.text.strip()
            red_text_only = "".join(run.text for run in red_runs).strip()
            print(f"  πŸ“Œ Paragraph {para_idx + 1}: Found red text: '{red_text_only}'")
            
            # Try to match the red text specifically first
            json_value = find_matching_json_value(red_text_only, flat_json)
            
            # If no match, try some common patterns
            if json_value is None:
                # Check for signature patterns
                if "AUDITOR SIGNATURE" in red_text_only.upper() or "DATE" in red_text_only.upper():
                    json_value = find_matching_json_value("auditor signature", flat_json)
                elif "OPERATOR SIGNATURE" in red_text_only.upper():
                    json_value = find_matching_json_value("operator signature", flat_json)
                    
            if json_value is not None:
                replacement_text = get_value_as_string(json_value)
                print(f"    βœ… Replacing red text with: '{replacement_text}'")
                red_runs[0].text = replacement_text
                red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
                for run in red_runs[1:]:
                    run.text = ''
                replacements_made += 1
    return replacements_made

def process_hf(json_file, docx_file, output_file):
    """
    Accepts file-like objects or file paths.
    For Hugging Face: json_file, docx_file, output_file will be file-like objects.
    """
    try:
        # --- Load JSON (file or file-like) ---
        if hasattr(json_file, "read"):
            json_data = json.load(json_file)
        else:
            with open(json_file, 'r', encoding='utf-8') as f:
                json_data = json.load(f)
        flat_json = flatten_json(json_data)
        print("πŸ“„ Available JSON keys (sample):")
        for i, (key, value) in enumerate(sorted(flat_json.items())):
            if i < 10:
                print(f"  - {key}: {value}")
        print(f"  ... and {len(flat_json) - 10} more keys\n")

        # --- Load DOCX (file or file-like) ---
        if hasattr(docx_file, "read"):
            doc = Document(docx_file)
        else:
            doc = Document(docx_file)

        table_replacements = process_tables(doc, flat_json)
        paragraph_replacements = process_paragraphs(doc, flat_json)
        total_replacements = table_replacements + paragraph_replacements

        # --- Save DOCX output (file or file-like) ---
        if hasattr(output_file, "write"):
            doc.save(output_file)
        else:
            doc.save(output_file)
        print(f"\nβœ… Document saved as: {output_file}")
        print(f"βœ… Total replacements: {total_replacements} ({table_replacements} in tables, {paragraph_replacements} in paragraphs)")

    except FileNotFoundError as e:
        print(f"❌ File not found: {e}")
    except Exception as e:
        print(f"❌ Error: {e}")
        import traceback
        traceback.print_exc()

main(json_path, docx_path, output_path)