SmartHeal-Agentic-AI / src /ui_components_original.py
SmartHeal's picture
Update src/ui_components_original.py
e8aecf7 verified
raw
history blame
58.7 kB
import gradio as gr
import os
import re
import logging
import base64
from datetime import datetime
from PIL import Image
import html
from typing import Optional
from .patient_history import PatientHistoryManager, ReportGenerator
def pil_to_base64(pil_image):
"""Convert PIL Image to base64 data URL"""
import io
import base64
from PIL import Image
if pil_image is None:
return None
try:
# Convert image to RGB if it's not already
if pil_image.mode != 'RGB':
pil_image = pil_image.convert('RGB')
buffer = io.BytesIO()
pil_image.save(buffer, format='PNG')
img_str = base64.b64encode(buffer.getvalue()).decode()
return f"data:image/png;base64,{img_str}"
except Exception as e:
logging.error(f"Error converting PIL image to base64: {e}")
return None
class UIComponents:
def __init__(self, auth_manager, database_manager, wound_analyzer):
self.auth_manager = auth_manager
self.database_manager = database_manager
self.wound_analyzer = wound_analyzer
self.current_user = {}
self.patient_history_manager = PatientHistoryManager(database_manager)
self.report_generator = ReportGenerator()
# Ensure uploads directory exists
if not os.path.exists("uploads"):
os.makedirs("uploads", exist_ok=True)
def image_to_base64(self, image_path):
"""Convert image to base64 data URL for embedding in HTML"""
if not image_path or not os.path.exists(image_path):
return None
try:
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode()
# Determine image format
image_ext = os.path.splitext(image_path)[1].lower()
if image_ext in [".jpg", ".jpeg"]:
mime_type = "image/jpeg"
elif image_ext == ".png":
mime_type = "image/png"
elif image_ext == ".gif":
mime_type = "image/gif"
else:
mime_type = "image/png" # Default to PNG
return f"data:{mime_type};base64,{encoded_string}"
except Exception as e:
logging.error(f"Error converting image to base64: {e}")
return None
def markdown_to_html(self, markdown_text):
"""Convert markdown text to proper HTML format with enhanced support"""
if not markdown_text:
return ""
# Escape HTML entities first to prevent issues with special characters
html_text = html.escape(markdown_text)
# Convert headers
html_text = re.sub(r"^### (.*?)$", r"<h3>\1</h3>", html_text, flags=re.MULTILINE)
html_text = re.sub(r"^## (.*?)$", r"<h2>\1</h2>", html_text, flags=re.MULTILINE)
html_text = re.sub(r"^# (.*?)$", r"<h1>\1</h1>", html_text, flags=re.MULTILINE)
# Convert bold text
html_text = re.sub(r"\*\*(.*?)\*\*", r"<strong>\1</strong>", html_text)
# Convert italic text
html_text = re.sub(r"\*(.*?)\*", r"<em>\1</em>", html_text)
# Convert code blocks (triple backticks)
html_text = re.sub(r"```(.*?)```", r"<pre><code>\1</code></pre>", html_text, flags=re.DOTALL)
# Convert inline code (single backticks)
html_text = re.sub(r"`(.*?)`", r"<code>\1</code>", html_text)
# Convert blockquotes
html_text = re.sub(r"^> (.*?)$", r"<blockquote>\1</blockquote>", html_text, flags=re.MULTILINE)
# Convert links
html_text = re.sub(r"\[(.*?)\]\((.*?)\)", r"<a href=\"\2\">\1</a>", html_text)
# Convert horizontal rules
html_text = re.sub(r"^\s*[-*_]{3,}\s*$", r"<hr>", html_text, flags=re.MULTILINE)
# Convert bullet points
lines = html_text.split("\n")
in_list = False
result_lines = []
for line in lines:
stripped = line.strip()
if stripped.startswith("- "):
if not in_list:
result_lines.append("<ul>")
in_list = True
result_lines.append(f"<li>{stripped[2:]}</li>")
else:
if in_list:
result_lines.append("</ul>")
in_list = False
if stripped:
result_lines.append(f"<p>{stripped}</p>")
else:
result_lines.append("<br>")
if in_list:
result_lines.append("</ul>")
return "\n".join(result_lines)
def get_organizations_dropdown(self):
"""Get list of organizations for dropdown"""
try:
organizations = self.database_manager.get_organizations()
return [f"{org['org_name']} - {org['location']}" for org in organizations]
except Exception as e:
logging.error(f"Error getting organizations: {e}")
return ["Default Hospital - Location"]
def get_custom_css(self):
return """
/* =================== SMARTHEAL CSS =================== */
/* Global Styling */
body, html {
margin: 0 !important;
padding: 0 !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', 'Oxygen', 'Ubuntu', 'Cantarell', sans-serif !important;
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%) !important;
color: #1A202C !important;
line-height: 1.6 !important;
}
/* Professional Header with Logo */
.medical-header {
background: linear-gradient(135deg, #3182ce 0%, #2c5aa0 100%) !important;
color: white !important;
padding: 32px 40px !important;
border-radius: 20px 20px 0 0 !important;
display: flex !important;
align-items: center !important;
justify-content: center !important;
margin-bottom: 0 !important;
box-shadow: 0 10px 40px rgba(49, 130, 206, 0.3) !important;
border: none !important;
position: relative !important;
overflow: hidden !important;
}
.logo {
width: 80px !important;
height: 80px !important;
border-radius: 50% !important;
margin-right: 24px !important;
border: 4px solid rgba(255, 255, 255, 0.3) !important;
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.2) !important;
background: white !important;
padding: 4px !important;
}
.medical-header h1 {
font-size: 3.5rem !important;
font-weight: 800 !important;
margin: 0 !important;
text-shadow: 2px 2px 8px rgba(0, 0, 0, 0.3) !important;
background: linear-gradient(45deg, #ffffff, #f8f9fa) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
background-clip: text !important;
filter: drop-shadow(2px 2px 4px rgba(0, 0, 0, 0.3)) !important;
}
.medical-header p {
font-size: 1.3rem !important;
margin: 8px 0 0 0 !important;
opacity: 0.95 !important;
font-weight: 500 !important;
text-shadow: 1px 1px 4px rgba(0, 0, 0, 0.2) !important;
}
/* Enhanced Form Styling */
.gr-form {
background: linear-gradient(145deg, #ffffff 0%, #f8f9fa 100%) !important;
border-radius: 20px !important;
padding: 32px !important;
margin: 24px 0 !important;
box-shadow: 0 16px 48px rgba(0, 0, 0, 0.1) !important;
border: 1px solid rgba(229, 62, 62, 0.1) !important;
backdrop-filter: blur(10px) !important;
position: relative !important;
overflow: hidden !important;
}
/* Professional Input Fields */
.gr-textbox, .gr-number {
border-radius: 12px !important;
border: 2px solid #E2E8F0 !important;
background: #FFFFFF !important;
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05) !important;
font-size: 1rem !important;
color: #1A202C !important;
padding: 16px 20px !important;
}
.gr-textbox:focus, .gr-number:focus, .gr-textbox input:focus, .gr-number input:focus {
border-color: #E53E3E !important;
box-shadow: 0 0 0 4px rgba(229, 62, 62, 0.1) !important;
background: #FFFFFF !important;
outline: none !important;
transform: translateY(-1px) !important;
}
/* Enhanced Button Styling */
button.gr-button, button.gr-button-primary {
background: linear-gradient(135deg, #E53E3E 0%, #C53030 100%) !important;
color: #FFFFFF !important;
border: none !important;
border-radius: 12px !important;
font-weight: 700 !important;
padding: 16px 32px !important;
font-size: 1.1rem !important;
letter-spacing: 0.5px !important;
text-align: center !important;
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
box-shadow: 0 4px 16px rgba(229, 62, 62, 0.3) !important;
position: relative !important;
overflow: hidden !important;
text-transform: uppercase !important;
cursor: pointer !important;
}
button.gr-button:hover, button.gr-button-primary:hover {
background: linear-gradient(135deg, #C53030 0%, #9C2A2A 100%) !important;
box-shadow: 0 8px 32px rgba(229, 62, 62, 0.4) !important;
transform: translateY(-3px) !important;
}
/* Professional Status Messages */
.status-success {
background: linear-gradient(135deg, #F0FFF4 0%, #E6FFFA 100%) !important;
border: 2px solid #38A169 !important;
color: #22543D !important;
padding: 20px 24px !important;
border-radius: 16px !important;
font-weight: 600 !important;
margin: 16px 0 !important;
box-shadow: 0 8px 24px rgba(56, 161, 105, 0.2) !important;
backdrop-filter: blur(10px) !important;
}
.status-error {
background: linear-gradient(135deg, #FFF5F5 0%, #FED7D7 100%) !important;
border: 2px solid #E53E3E !important;
color: #742A2A !important;
padding: 20px 24px !important;
border-radius: 16px !important;
font-weight: 600 !important;
margin: 16px 0 !important;
box-shadow: 0 8px 24px rgba(229, 62, 62, 0.2) !important;
backdrop-filter: blur(10px) !important;
}
.status-warning {
background: linear-gradient(135deg, #FFFAF0 0%, #FEEBC8 100%) !important;
border: 2px solid #DD6B20 !important;
color: #9C4221 !important;
padding: 20px 24px !important;
border-radius: 16px !important;
font-weight: 600 !important;
margin: 16px 0 !important;
box-shadow: 0 8px 24px rgba(221, 107, 32, 0.2) !important;
backdrop-filter: blur(10px) !important;
}
/* Image gallery styling for better visualization */
.image-gallery {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 20px;
margin: 20px 0;
}
.image-item {
background: #f8f9fa;
border-radius: 12px;
padding: 15px;
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
text-align: center;
}
.image-item img {
max-width: 100%;
height: auto;
border-radius: 8px;
box-shadow: 0 2px 8px rgba(0,0,0,0.15);
}
.image-item h4 {
margin: 15px 0 5px 0;
color: #2d3748;
font-weight: 600;
}
.image-item p {
margin: 0;
color: #666;
font-size: 0.9em;
}
/* Analyze button special styling */
#analyze-btn {
background: linear-gradient(135deg, #1B5CF3 0%, #1E3A8A 100%) !important;
color: #FFFFFF !important;
border: none !important;
border-radius: 8px !important;
font-weight: 700 !important;
padding: 14px 28px !important;
font-size: 1.1rem !important;
letter-spacing: 0.5px !important;
text-align: center !important;
transition: all 0.2s ease-in-out !important;
}
#analyze-btn:hover {
background: linear-gradient(135deg, #174ea6 0%, #123b82 100%) !important;
box-shadow: 0 4px 14px rgba(27, 95, 193, 0.4) !important;
transform: translateY(-2px) !important;
}
/* Responsive design */
@media (max-width: 768px) {
.medical-header {
padding: 16px !important;
text-align: center !important;
}
.medical-header h1 {
font-size: 2rem !important;
}
.logo {
width: 48px !important;
height: 48px !important;
margin-right: 16px !important;
}
.gr-form {
padding: 16px !important;
margin: 8px 0 !important;
}
.image-gallery {
grid-template-columns: 1fr;
}
}
"""
def create_interface(self):
"""
SmartHeal UI – aligned with current DB + history manager:
• Login (practitioner / organization)
• Practitioner: Wound Analysis (existing vs new patient), Patient History, View Details
• Images from disk are shown via data URLs for reliable rendering
"""
import gradio as gr
from PIL import Image
# ----------------------- helpers (inner) -----------------------
self._patient_choices = [] # list[str] rendered in dropdown
self._patient_map = {} # label -> patient_id (int)
def _to_data_url_if_local(path_or_url: str) -> str:
if not path_or_url:
return ""
try:
if os.path.exists(path_or_url):
return self.image_to_base64(path_or_url) or ""
return path_or_url # already a URL
except Exception:
return ""
def _refresh_patient_dropdown(user_id: int):
"""Query patient's list and prepare dropdown choices."""
self._patient_choices = []
self._patient_map = {}
try:
rows = self.patient_history_manager.get_patient_list(user_id) or []
# label starts with id -> stable parse
for r in rows:
pid = int(r.get("id") or 0)
nm = r.get("patient_name") or "Unknown"
age = r.get("patient_age") or ""
gen = r.get("patient_gender") or ""
v = int(r.get("total_visits") or 0)
label = f"{pid}{nm} ({age}y {gen}) — visits: {v}"
self._patient_choices.append(label)
self._patient_map[label] = pid
except Exception as e:
logging.error(f"refresh dropdown error: {e}")
def _label_to_id(label: str) -> Optional[int]:
if not label: return None
try:
return int(str(label).split("•", 1)[0].strip())
except Exception:
return None
def _fetch_patient_core(pid: int):
"""Get name/age/gender for an existing patient id."""
row = self.database_manager.execute_query_one(
"SELECT id, name, age, gender FROM patients WHERE id=%s LIMIT 1", (pid,)
)
return row or {}
def _response_to_patient_id(resp_id: int) -> Optional[int]:
row = self.database_manager.execute_query_one(
"SELECT patient_id FROM questionnaire_responses WHERE id=%s LIMIT 1", (resp_id,)
)
try:
return int(row["patient_id"]) if row and "patient_id" in row else None
except Exception:
return None
def _rows_with_inline_images(rows: list[dict]) -> list[dict]:
"""Convert local file paths to data URLs so HTML displays them anywhere."""
out = []
for r in rows or []:
r = dict(r)
if r.get("image_url"):
r["image_url"] = _to_data_url_if_local(r["image_url"])
out.append(r)
return out
# ----------------------- Blocks UI -----------------------
with gr.Blocks(css=self.get_custom_css(), title="SmartHeal - AI Wound Care Assistant") as app:
# Header
logo_url = "https://scontent.fccu31-2.fna.fbcdn.net/v/t39.30808-6/275933824_102121829111657_3325198727201325354_n.jpg?_nc_cat=104&ccb=1-7&_nc_sid=6ee11a&_nc_ohc=45krrEUpcSUQ7kNvwGVdiMW&_nc_oc=AdkTdxEC_TkYGiyDkEtTJZ_DFZELW17XKFmWpswmFqGB7JSdvTyWtnrQyLS0USngEiY&_nc_zt=23&_nc_ht=scontent.fccu31-2.fna&_nc_gid=ufAA4Hj5gTRwON5POYzz0Q&oh=00_AfW1-jLEN5RGeggqOvGgEaK_gdg0EDgxf_VhKbZwFLUO0Q&oe=6897A98B"
gr.HTML(f"""
<div class="medical-header">
<img src="{logo_url}" class="logo" alt="SmartHeal Logo">
<div>
<h1>SmartHeal AI</h1>
<p>Advanced Wound Care Analysis & Clinical Support System</p>
</div>
</div>
""")
# Disclaimer
gr.HTML("""
<div style="border:2px solid #FF6B6B;background:#FFE5E5;padding:15px;border-radius:12px;margin:10px 0;">
<h3 style="color:#D63031;margin:0 0 8px 0;">⚠️ IMPORTANT DISCLAIMER</h3>
<p><strong>This system is for testing/education and not a substitute for clinical judgment.</strong></p>
</div>
""")
# Panels: auth vs practitioner vs organization
with gr.Row():
with gr.Column(visible=True) as auth_panel:
with gr.Tabs():
with gr.Tab("🔐 Professional Login"):
login_username = gr.Textbox(label="👤 Username")
login_password = gr.Textbox(label="🔒 Password", type="password")
login_btn = gr.Button("🚀 Sign In", variant="primary")
login_status = gr.HTML("<div class='status-warning'>Please sign in.</div>")
with gr.Tab("📝 New Registration"):
signup_username = gr.Textbox(label="👤 Username")
signup_email = gr.Textbox(label="📧 Email")
signup_password = gr.Textbox(label="🔒 Password", type="password")
signup_name = gr.Textbox(label="👨‍⚕️ Full Name")
signup_role = gr.Radio(["practitioner", "organization"], label="Account Type", value="practitioner")
with gr.Group(visible=False) as org_fields:
org_name = gr.Textbox(label="Organization Name")
phone = gr.Textbox(label="Phone")
country_code = gr.Textbox(label="Country Code")
department = gr.Textbox(label="Department")
location = gr.Textbox(label="Location")
with gr.Group(visible=True) as prac_fields:
organization_dropdown = gr.Dropdown(choices=self.get_organizations_dropdown(), label="Select Organization")
signup_btn = gr.Button("✨ Create Account", variant="primary")
signup_status = gr.HTML()
with gr.Column(visible=False) as practitioner_panel:
user_info = gr.HTML("")
logout_btn_prac = gr.Button("🚪 Logout", variant="secondary")
with gr.Tabs():
# ------------------- WOUND ANALYSIS -------------------
with gr.Tab("🔬 Wound Analysis"):
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>📋 Patient Selection</h3>")
patient_mode = gr.Radio(
["Existing patient", "New patient"],
label="Patient mode",
value="Existing patient"
)
existing_patient_dd = gr.Dropdown(
choices=[],
label="Select existing patient (ID • Name)",
interactive=True
)
with gr.Group(visible=False) as new_patient_group:
new_patient_name = gr.Textbox(label="Patient Name")
new_patient_age = gr.Number(label="Age", value=30, minimum=0, maximum=120)
new_patient_gender = gr.Dropdown(choices=["Male", "Female", "Other"], value="Male", label="Gender")
gr.HTML("<h3>🩹 Wound Information</h3>")
wound_location = gr.Textbox(label="Wound Location", placeholder="e.g., Left ankle")
wound_duration = gr.Textbox(label="Wound Duration", placeholder="e.g., 2 weeks")
pain_level = gr.Slider(0, 10, value=5, step=1, label="Pain Level (0-10)")
gr.HTML("<h3>⚕️ Clinical Assessment</h3>")
moisture_level = gr.Dropdown(["Dry", "Moist", "Wet", "Saturated"], value="Moist", label="Moisture Level")
infection_signs = gr.Dropdown(["None", "Mild", "Moderate", "Severe"], value="None", label="Signs of Infection")
diabetic_status = gr.Dropdown(["Non-diabetic", "Type 1", "Type 2", "Gestational"], value="Non-diabetic", label="Diabetic Status")
with gr.Column(scale=1):
gr.HTML("<h3>📸 Wound Image</h3>")
wound_image = gr.Image(label="Upload Wound Image", type="filepath")
gr.HTML("<h3>📝 Medical History</h3>")
previous_treatment = gr.Textbox(label="Previous Treatment", lines=3)
medical_history = gr.Textbox(label="Medical History", lines=3)
medications = gr.Textbox(label="Current Medications", lines=2)
allergies = gr.Textbox(label="Known Allergies", lines=2)
additional_notes = gr.Textbox(label="Additional Notes", lines=3)
analyze_btn = gr.Button("🔬 Analyze Wound", variant="primary", elem_id="analyze-btn")
analysis_output = gr.HTML("")
# ------------------- PATIENT HISTORY -------------------
with gr.Tab("📋 Patient History"):
with gr.Row():
with gr.Column(scale=2):
history_btn = gr.Button("📄 Load Patient History", variant="primary")
patient_history_output = gr.HTML("")
with gr.Column(scale=1):
search_patient_name = gr.Textbox(label="Search patient by name")
search_patient_btn = gr.Button("🔍 Search", variant="secondary")
specific_patient_output = gr.HTML("")
gr.HTML("<hr style='margin:10px 0 6px 0;border:none;border-top:1px solid #e2e8f0'>")
with gr.Row():
view_details_dd = gr.Dropdown(choices=[], label="Select patient to view details")
view_details_btn = gr.Button("📈 View Details (Timeline)", variant="primary")
view_details_output = gr.HTML("")
with gr.Column(visible=False) as organization_panel:
gr.HTML("<div class='status-warning'>Organization dashboard coming soon.</div>")
logout_btn_org = gr.Button("🚪 Logout", variant="secondary")
# ----------------------- handlers -----------------------
def toggle_role_fields(role):
return {
org_fields: gr.update(visible=(role == "organization")),
prac_fields: gr.update(visible=(role != "organization"))
}
def handle_signup(username, email, password, name, role, org_name_v, phone_v, cc_v, dept_v, loc_v, org_dropdown):
try:
if role == "organization":
org_data = {
'org_name': org_name_v,
'email': email,
'phone': phone_v,
'country_code': cc_v,
'department': dept_v,
'location': loc_v
}
org_id = self.database_manager.create_organization(org_data)
else:
# For now pick first org (or default)
org_id = 1
user_data = {
'username': username, 'email': email, 'password': password,
'name': name, 'role': role, 'org_id': org_id
}
ok = self.auth_manager.create_user(user_data)
if ok:
return "<div class='status-success'>✅ Account created. Please log in.</div>"
return "<div class='status-error'>❌ Could not create account. Username/email may exist.</div>"
except Exception as e:
return f"<div class='status-error'>❌ Error: {html.escape(str(e))}</div>"
def handle_login(username, password):
user = self.auth_manager.authenticate_user(username, password)
if not user:
return {
login_status: "<div class='status-error'>❌ Invalid credentials.</div>"
}
self.current_user = user
uid = int(user.get("id"))
role = user.get("role")
# Preload patient dropdowns for practitioners
if role == "practitioner":
_refresh_patient_dropdown(uid)
info = f"<div class='status-success'>Welcome, <strong>{html.escape(user.get('name','User'))}</strong> — {html.escape(role)}</div>"
updates = {login_status: info}
if role == "practitioner":
updates.update({
auth_panel: gr.update(visible=False),
practitioner_panel: gr.update(visible=True),
user_info: info,
existing_patient_dd: gr.update(choices=self._patient_choices),
view_details_dd: gr.update(choices=self._patient_choices),
})
else:
updates.update({
auth_panel: gr.update(visible=False),
organization_panel: gr.update(visible=True),
})
return updates
def handle_logout():
self.current_user = {}
return {
auth_panel: gr.update(visible=True),
practitioner_panel: gr.update(visible=False),
organization_panel: gr.update(visible=False)
}
def on_patient_mode_change(mode):
return {
new_patient_group: gr.update(visible=(mode == "New patient")),
existing_patient_dd: gr.update(interactive=(mode == "Existing patient"))
}
def run_analysis(mode, existing_label,
np_name, np_age, np_gender,
w_loc, w_dur, pain, moist, infect, diabetic,
prev_tx, med_hist, meds, alls, notes, img_path):
try:
if not img_path:
return "<div class='status-error'>❌ Please upload a wound image.</div>"
user_id = int(self.current_user.get("id", 0) or 0)
if not user_id:
return "<div class='status-error'>❌ Please login first.</div>"
# Determine patient core fields (ensures same patient_id for existing)
if mode == "Existing patient":
pid = _label_to_id(existing_label)
if not pid:
return "<div class='status-warning'>⚠️ Select an existing patient.</div>"
pcore = _fetch_patient_core(pid)
patient_name_v = pcore.get("name")
patient_age_v = pcore.get("age")
patient_gender_v = pcore.get("gender")
else:
patient_name_v = np_name
patient_age_v = np_age
patient_gender_v = np_gender
# Build questionnaire payload
q_payload = {
'user_id': user_id,
'patient_name': patient_name_v,
'patient_age': patient_age_v,
'patient_gender': patient_gender_v,
'wound_location': w_loc,
'wound_duration': w_dur,
'pain_level': pain,
'moisture_level': moist,
'infection_signs': infect,
'diabetic_status': diabetic,
'previous_treatment': prev_tx,
'medical_history': med_hist,
'medications': meds,
'allergies': alls,
'additional_notes': notes
}
# Save questionnaire -> response_id
response_id = self.database_manager.save_questionnaire(q_payload)
if not response_id:
return "<div class='status-error'>❌ Could not save questionnaire.</div>"
# Resolve patient_id from response (works for new or existing)
patient_id = _response_to_patient_id(response_id)
if not patient_id:
return "<div class='status-error'>❌ Could not resolve patient ID.</div>"
# Save wound image to DB
try:
with Image.open(img_path) as pil:
pil = pil.convert("RGB")
img_meta = self.database_manager.save_wound_image(patient_id, pil)
image_db_id = img_meta["id"] if img_meta else None
except Exception as e:
logging.error(f"save_wound_image error: {e}")
image_db_id = None
# Prepare AI analyzer questionnaire dict
q_for_ai = {
'age': patient_age_v,
'diabetic': 'Yes' if diabetic != 'Non-diabetic' else 'No',
'allergies': alls,
'date_of_injury': 'Unknown',
'professional_care': 'Yes',
'oozing_bleeding': 'Minor Oozing' if infect != 'None' else 'None',
'infection': 'Yes' if infect != 'None' else 'No',
'moisture': moist,
'patient_name': patient_name_v,
'patient_gender': patient_gender_v,
'wound_location': w_loc,
'wound_duration': w_dur,
'pain_level': pain,
'previous_treatment': prev_tx,
'medical_history': med_hist,
'medications': meds,
'additional_notes': notes
}
# Run AI
analysis_result = self.wound_analyzer.analyze_wound(img_path, q_for_ai)
if not analysis_result or not analysis_result.get("success"):
err = (analysis_result or {}).get("error", "Unknown analysis error")
return f"<div class='status-error'>❌ AI Analysis failed: {html.escape(str(err))}</div>"
# Persist AI analysis (ties back to template via response->questionnaire_id)
try:
self.database_manager.save_analysis(response_id, image_db_id, analysis_result)
except Exception as e:
logging.error(f"save_analysis error: {e}")
# If a new patient was created, refresh dropdowns
if mode == "New patient":
_refresh_patient_dropdown(user_id)
# Render fancy results (this method already converts file paths to data URLs)
return self._format_comprehensive_analysis_results(
analysis_result, img_path, q_for_ai
)
except Exception as e:
logging.exception("run_analysis exception")
return f"<div class='status-error'>❌ System error: {html.escape(str(e))}</div>"
def load_history():
try:
uid = int(self.current_user.get("id", 0) or 0)
if not uid:
return "<div class='status-error'>❌ Please login first.</div>"
rows = self.patient_history_manager.get_user_patient_history(uid) or []
rows = _rows_with_inline_images(rows)
return self.patient_history_manager.format_history_for_display(rows)
except Exception as e:
logging.error(f"load_history error: {e}")
return f"<div class='status-error'>❌ Error: {html.escape(str(e))}</div>"
def do_search(name):
try:
uid = int(self.current_user.get("id", 0) or 0)
if not uid:
return "<div class='status-error'>❌ Please login first.</div>"
if not (name or "").strip():
return "<div class='status-warning'>⚠️ Enter a name to search.</div>"
rows = self.patient_history_manager.search_patient_by_name(uid, name.strip()) or []
rows = _rows_with_inline_images(rows)
return self.patient_history_manager.format_patient_data_for_display(rows)
except Exception as e:
logging.error(f"search error: {e}")
return f"<div class='status-error'>❌ Error: {html.escape(str(e))}</div>"
def view_details(existing_label):
try:
uid = int(self.current_user.get("id", 0) or 0)
if not uid:
return "<div class='status-error'>❌ Please login first.</div>"
pid = _label_to_id(existing_label)
if not pid:
return "<div class='status-warning'>⚠️ Select a patient.</div>"
rows = self.patient_history_manager.get_wound_progression_by_id(uid, pid) or []
rows = _rows_with_inline_images(rows)
return self.patient_history_manager.format_patient_progress_for_display(rows)
except Exception as e:
logging.error(f"view_details error: {e}")
return f"<div class='status-error'>❌ Error: {html.escape(str(e))}</div>"
# ----------------------- wiring -----------------------
signup_role.change(
toggle_role_fields,
inputs=[signup_role],
outputs=[org_fields, prac_fields]
)
signup_btn.click(
handle_signup,
inputs=[signup_username, signup_email, signup_password, signup_name, signup_role,
org_name, phone, country_code, department, location, organization_dropdown],
outputs=[signup_status]
)
login_btn.click(
handle_login,
inputs=[login_username, login_password],
outputs=[login_status, auth_panel, practitioner_panel, organization_panel,
user_info, existing_patient_dd, view_details_dd]
)
logout_btn_prac.click(handle_logout, outputs=[auth_panel, practitioner_panel, organization_panel])
logout_btn_org.click(handle_logout, outputs=[auth_panel, practitioner_panel, organization_panel])
patient_mode.change(
on_patient_mode_change,
inputs=[patient_mode],
outputs=[new_patient_group, existing_patient_dd]
)
analyze_btn.click(
run_analysis,
inputs=[
patient_mode, existing_patient_dd,
new_patient_name, new_patient_age, new_patient_gender,
wound_location, wound_duration, pain_level, moisture_level, infection_signs, diabetic_status,
previous_treatment, medical_history, medications, allergies, additional_notes, wound_image
],
outputs=[analysis_output]
)
history_btn.click(load_history, outputs=[patient_history_output])
search_patient_btn.click(do_search, inputs=[search_patient_name], outputs=[specific_patient_output])
view_details_btn.click(view_details, inputs=[view_details_dd], outputs=[view_details_output])
return app
def _format_comprehensive_analysis_results(self, analysis_result, image_url=None, questionnaire_data=None):
"""Format comprehensive analysis results with all visualization images from AIProcessor."""
try:
# Extract the core analysis results from AIProcessor
success = analysis_result.get('success', False)
if not success:
error_msg = analysis_result.get('error', 'Unknown error')
return f"<div class='status-error'>❌ Analysis failed: {error_msg}</div>"
visual_analysis = analysis_result.get('visual_analysis', {})
report = analysis_result.get('report', '')
saved_image_path = analysis_result.get('saved_image_path', '')
# Extract wound metrics
wound_type = visual_analysis.get('wound_type', 'Unknown')
length_cm = visual_analysis.get('length_cm', 0)
breadth_cm = visual_analysis.get('breadth_cm', 0)
area_cm2 = visual_analysis.get('surface_area_cm2', 0)
detection_confidence = visual_analysis.get('detection_confidence', 0)
# Get image paths for visualizations
detection_image_path = visual_analysis.get('detection_image_path', '')
segmentation_image_path = visual_analysis.get('segmentation_image_path', '')
original_image_path = visual_analysis.get('original_image_path', '')
# Convert images to base64 for embedding
original_image_base64 = None
detection_image_base64 = None
segmentation_image_base64 = None
# Original uploaded image
if image_url and os.path.exists(image_url):
original_image_base64 = self.image_to_base64(image_url)
elif original_image_path and os.path.exists(original_image_path):
original_image_base64 = self.image_to_base64(original_image_path)
elif saved_image_path and os.path.exists(saved_image_path):
original_image_base64 = self.image_to_base64(saved_image_path)
# Detection visualization
if detection_image_path and os.path.exists(detection_image_path):
detection_image_base64 = self.image_to_base64(detection_image_path)
# Segmentation visualization
if segmentation_image_path and os.path.exists(segmentation_image_path):
segmentation_image_base64 = self.image_to_base64(segmentation_image_path)
# Generate risk assessment from questionnaire data
risk_assessment = self._generate_risk_assessment(questionnaire_data)
risk_level = risk_assessment['risk_level']
risk_score = risk_assessment['risk_score']
risk_factors = risk_assessment['risk_factors']
# Set risk class for styling
risk_class = "low"
if risk_level.lower() == "moderate":
risk_class = "moderate"
elif risk_level.lower() in ["high", "very high"]:
risk_class = "high"
# Format risk factors
risk_factors_html = "<ul>" + "".join(f"<li>{factor}</li>" for factor in risk_factors) + "</ul>" if risk_factors else "<p>No specific risk factors identified.</p>"
# Create image gallery
image_gallery_html = ""
if original_image_base64 or detection_image_base64 or segmentation_image_base64:
image_gallery_html = '<div class="image-gallery">'
if original_image_base64:
image_gallery_html += f'''
<div class="image-item">
<img src="{original_image_base64}" alt="Original Wound Image">
<h4>📸 Original Wound Image</h4>
<p>Uploaded image for analysis</p>
</div>
'''
if detection_image_base64:
image_gallery_html += f'''
<div class="image-item">
<img src="{detection_image_base64}" alt="Wound Detection">
<h4>🎯 Wound Detection</h4>
<p>AI-detected wound boundaries with {detection_confidence:.1%} confidence</p>
</div>
'''
if segmentation_image_base64:
image_gallery_html += f'''
<div class="image-item">
<img src="{segmentation_image_base64}" alt="Wound Segmentation">
<h4>📏 Wound Segmentation</h4>
<p>Detailed wound area measurement and analysis</p>
</div>
'''
image_gallery_html += '</div>'
# Convert markdown report to HTML
report_html = ""
if report:
report_html = self.markdown_to_html(report)
# Final comprehensive HTML output
html_output = f"""
<div style="max-width: 1200px; margin: 0 auto; background: white; border-radius: 16px; box-shadow: 0 8px 32px rgba(0,0,0,0.1); overflow: hidden;">
<div style="background: linear-gradient(135deg, #3182ce 0%, #2c5aa0 100%); color: white; padding: 40px; text-align: center;">
<h1 style="margin: 0; font-size: 32px; font-weight: 700;">🔬 SmartHeal AI Comprehensive Analysis</h1>
<p style="margin: 15px 0 0 0; opacity: 0.9; font-size: 18px;">Advanced Computer Vision & Medical AI Assessment</p>
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 8px; margin-top: 20px;">
<p style="margin: 0; font-size: 16px;"><strong>Patient:</strong> {questionnaire_data.get('patient_name', 'Unknown')} | <strong>Analysis Date:</strong> {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}</p>
</div>
</div>
<div style="padding: 40px;">
<div class="status-success" style="margin-bottom: 30px;">
<strong>✅ Analysis Status:</strong> Analysis completed successfully with comprehensive wound assessment
</div>
<!-- Image Gallery Section -->
<div style="margin-bottom: 40px;">
<h2 style="color: #2d3748; font-size: 24px; margin-bottom: 20px; border-bottom: 2px solid #e53e3e; padding-bottom: 10px;">🖼️ Visual Analysis Gallery</h2>
{image_gallery_html}
</div>
<!-- Wound Detection & Classification -->
<div style="background: #f8f9fa; padding: 30px; border-radius: 12px; margin-bottom: 30px;">
<h2 style="color: #2d3748; margin-top: 0;">🔍 Wound Detection & Classification</h2>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 20px; margin: 20px 0;">
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #3182ce; margin: 0 0 10px 0;">Wound Type</h3>
<p style="font-weight: 600; font-size: 18px; color: #2d3748; margin: 0;">{wound_type}</p>
</div>
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #3182ce; margin: 0 0 10px 0;">Detection Confidence</h3>
<p style="font-weight: 600; font-size: 18px; color: #2d3748; margin: 0;">{detection_confidence:.1%}</p>
</div>
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #3182ce; margin: 0 0 10px 0;">Location</h3>
<p style="font-weight: 600; font-size: 18px; color: #2d3748; margin: 0;">{questionnaire_data.get('wound_location', 'Not specified')}</p>
</div>
</div>
</div>
<!-- Wound Measurements -->
<div style="background: #e7f5ff; padding: 30px; border-radius: 12px; margin-bottom: 30px;">
<h2 style="color: #2d3748; margin-top: 0;">📏 Wound Measurements</h2>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(150px, 1fr)); gap: 20px; margin: 20px 0;">
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #e53e3e; margin: 0 0 10px 0;">Length</h3>
<p style="font-weight: 700; font-size: 24px; color: #2d3748; margin: 0;">{length_cm:.2f} cm</p>
</div>
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #e53e3e; margin: 0 0 10px 0;">Width</h3>
<p style="font-weight: 700; font-size: 24px; color: #2d3748; margin: 0;">{breadth_cm:.2f} cm</p>
</div>
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #e53e3e; margin: 0 0 10px 0;">Surface Area</h3>
<p style="font-weight: 700; font-size: 24px; color: #2d3748; margin: 0;">{area_cm2:.2f} cm²</p>
</div>
</div>
</div>
<!-- Risk Assessment -->
<div style="background: #fff4e6; padding: 30px; border-radius: 12px; margin-bottom: 30px;">
<h2 style="color: #2d3748; margin-top: 0;">⚠️ Risk Assessment</h2>
<div style="display: flex; align-items: center; margin: 20px 0; flex-wrap: wrap;">
<div style="background: {'#d4edda' if risk_class == 'low' else '#fff3cd' if risk_class == 'moderate' else '#f8d7da'};
color: {'#155724' if risk_class == 'low' else '#856404' if risk_class == 'moderate' else '#721c24'};
padding: 15px 30px;
border-radius: 30px;
font-weight: 700;
font-size: 20px;
text-transform: uppercase;
letter-spacing: 1px;
margin-right: 20px;
margin-bottom: 10px;">
{risk_level} RISK
</div>
<div style="font-size: 18px; color: #2d3748;">
<strong>Risk Score:</strong> {risk_score}/10
</div>
</div>
<div style="background: white; padding: 25px; border-radius: 8px; margin: 15px 0; box-shadow: 0 2px 8px rgba(0,0,0,0.05);">
<h3 style="margin-top: 0; color: #2d3748;">Identified Risk Factors:</h3>
{risk_factors_html}
</div>
</div>
<!-- Patient Information Summary -->
<div style="background: #f0f8f0; padding: 30px; border-radius: 12px; margin-bottom: 30px;">
<h2 style="color: #2d3748; margin-top: 0;">👤 Patient Information Summary</h2>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 15px;">
<div><strong>Age:</strong> {questionnaire_data.get('age', 'Not specified')} years</div>
<div><strong>Gender:</strong> {questionnaire_data.get('patient_gender', 'Not specified')}</div>
<div><strong>Diabetic Status:</strong> {questionnaire_data.get('diabetic', 'Unknown')}</div>
<div><strong>Pain Level:</strong> {questionnaire_data.get('pain_level', 'Not assessed')}/10</div>
<div><strong>Wound Duration:</strong> {questionnaire_data.get('wound_duration', 'Not specified')}</div>
<div><strong>Moisture Level:</strong> {questionnaire_data.get('moisture', 'Not assessed')}</div>
</div>
{f"<div style='margin-top: 20px;'><strong>Medical History:</strong> {questionnaire_data.get('medical_history', 'None provided')}</div>" if questionnaire_data.get('medical_history') else ""}
{f"<div style='margin-top: 10px;'><strong>Current Medications:</strong> {questionnaire_data.get('medications', 'None listed')}</div>" if questionnaire_data.get('medications') else ""}
{f"<div style='margin-top: 10px;'><strong>Known Allergies:</strong> {questionnaire_data.get('allergies', 'None listed')}</div>" if questionnaire_data.get('allergies') else ""}
</div>
<!-- AI Generated Report -->
{f'<div style="background: #f8f9fa; padding: 30px; border-radius: 12px; margin-bottom: 30px;"><h2 style="color: #2d3748; margin-top: 0;">🤖 AI-Generated Clinical Report</h2><div style="background: white; padding: 25px; border-radius: 8px; box-shadow: 0 2px 8px rgba(0,0,0,0.05);">{report_html}</div></div>' if report_html else ''}
<!-- Important Disclaimers -->
<div style="background: #fff5f5; border: 2px solid #feb2b2; padding: 25px; border-radius: 12px; margin: 30px 0;">
<h3 style="color: #c53030; margin-top: 0;">⚠️ Important Medical Disclaimers</h3>
<ul style="color: #742a2a; line-height: 1.6;">
<li><strong>Not a Medical Diagnosis:</strong> This AI analysis is for informational purposes only and does not constitute medical advice, diagnosis, or treatment.</li>
<li><strong>Professional Consultation Required:</strong> Always consult with qualified healthcare professionals for proper clinical assessment and treatment decisions.</li>
<li><strong>Measurement Accuracy:</strong> All measurements are estimates based on computer vision algorithms and should be verified with clinical tools.</li>
<li><strong>Risk Assessment Limitations:</strong> Risk factors are based on provided information and may not reflect the complete clinical picture.</li>
</ul>
</div>
<!-- Footer -->
<div style="text-align: center; padding: 30px 0; border-top: 2px solid #e2e8f0; margin-top: 30px;">
<p style="color: #6c757d; font-style: italic; font-size: 16px; margin: 0;">
🏥 Analysis completed by <strong>SmartHeal AI</strong> - Advanced Wound Care Assistant<br>
<small>Report generated on {datetime.now().strftime('%B %d, %Y at %I:%M %p')}</small>
</p>
</div>
</div>
</div>
"""
return html_output
except Exception as e:
logging.error(f"Error formatting comprehensive results: {e}")
return f"<div class='status-error'>❌ Error displaying results: {str(e)}</div>"
def _generate_risk_assessment(self, questionnaire_data):
"""Generate risk assessment based on questionnaire data"""
if not questionnaire_data:
return {'risk_level': 'Unknown', 'risk_score': 0, 'risk_factors': []}
risk_factors = []
risk_score = 0
try:
# Age assessment
age = questionnaire_data.get('age', 0)
if isinstance(age, str):
try:
age = int(age)
except ValueError:
age = 0
if age > 65:
risk_factors.append("Advanced age (>65 years)")
risk_score += 2
elif age > 50:
risk_factors.append("Older adult (50-65 years)")
risk_score += 1
# Diabetic status
diabetic_status = str(questionnaire_data.get('diabetic', '')).lower()
if 'yes' in diabetic_status:
risk_factors.append("Diabetes mellitus")
risk_score += 3
# Infection signs
infection = str(questionnaire_data.get('infection', '')).lower()
if 'yes' in infection:
risk_factors.append("Signs of infection present")
risk_score += 3
# Pain level
pain_level = questionnaire_data.get('pain_level', 0)
if isinstance(pain_level, str):
try:
pain_level = float(pain_level)
except ValueError:
pain_level = 0
if pain_level >= 7:
risk_factors.append("High pain level (≥7/10)")
risk_score += 2
elif pain_level >= 5:
risk_factors.append("Moderate pain level (5-6/10)")
risk_score += 1
# Wound duration
duration = str(questionnaire_data.get('wound_duration', '')).lower()
if any(term in duration for term in ['month', 'months', 'year', 'years']):
risk_factors.append("Chronic wound (>4 weeks)")
risk_score += 3
# Moisture level
moisture = str(questionnaire_data.get('moisture', '')).lower()
if any(term in moisture for term in ['wet', 'saturated']):
risk_factors.append("Excessive wound exudate")
risk_score += 1
# Medical history analysis
medical_history = str(questionnaire_data.get('medical_history', '')).lower()
if any(term in medical_history for term in ['vascular', 'circulation', 'heart']):
risk_factors.append("Cardiovascular disease")
risk_score += 2
if any(term in medical_history for term in ['immune', 'cancer', 'steroid']):
risk_factors.append("Immune system compromise")
risk_score += 2
if any(term in medical_history for term in ['smoking', 'tobacco']):
risk_factors.append("Smoking history")
risk_score += 2
# Determine risk level
if risk_score >= 8:
risk_level = "Very High"
elif risk_score >= 6:
risk_level = "High"
elif risk_score >= 3:
risk_level = "Moderate"
else:
risk_level = "Low"
return {
'risk_score': risk_score,
'risk_level': risk_level,
'risk_factors': risk_factors
}
except Exception as e:
logging.error(f"Risk assessment error: {e}")
return {
'risk_score': 0,
'risk_level': 'Unknown',
'risk_factors': ['Unable to assess risk due to data processing error']
}