Spaces:
Sleeping
Sleeping
Update src/ai_processor.py
Browse files- src/ai_processor.py +519 -157
src/ai_processor.py
CHANGED
|
@@ -36,14 +36,19 @@ knowledge_base_cache = {}
|
|
| 36 |
|
| 37 |
# =============== LAZY LOADING FUNCTIONS (CPU-SAFE) ===============
|
| 38 |
def load_yolo_model(yolo_model_path):
|
|
|
|
| 39 |
from ultralytics import YOLO
|
| 40 |
return YOLO(yolo_model_path)
|
| 41 |
|
| 42 |
def load_segmentation_model(seg_model_path):
|
|
|
|
|
|
|
|
|
|
| 43 |
from tensorflow.keras.models import load_model
|
| 44 |
return load_model(seg_model_path, compile=False)
|
| 45 |
|
| 46 |
def load_classification_pipeline(hf_token):
|
|
|
|
| 47 |
from transformers import pipeline
|
| 48 |
return pipeline(
|
| 49 |
"image-classification",
|
|
@@ -53,6 +58,7 @@ def load_classification_pipeline(hf_token):
|
|
| 53 |
)
|
| 54 |
|
| 55 |
def load_embedding_model():
|
|
|
|
| 56 |
return HuggingFaceEmbeddings(
|
| 57 |
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 58 |
model_kwargs={"device": "cpu"}
|
|
@@ -60,28 +66,34 @@ def load_embedding_model():
|
|
| 60 |
|
| 61 |
# =============== MODEL INITIALIZATION ===============
|
| 62 |
def initialize_cpu_models():
|
|
|
|
| 63 |
global models_cache
|
|
|
|
| 64 |
if HF_TOKEN:
|
| 65 |
HfFolder.save_token(HF_TOKEN)
|
| 66 |
logging.info("✅ HuggingFace token set")
|
|
|
|
| 67 |
if "det" not in models_cache:
|
| 68 |
try:
|
| 69 |
models_cache["det"] = load_yolo_model(YOLO_MODEL_PATH)
|
| 70 |
logging.info("✅ YOLO model loaded (CPU only)")
|
| 71 |
except Exception as e:
|
| 72 |
logging.error(f"YOLO load failed: {e}")
|
|
|
|
| 73 |
if "seg" not in models_cache:
|
| 74 |
try:
|
| 75 |
models_cache["seg"] = load_segmentation_model(SEG_MODEL_PATH)
|
| 76 |
logging.info("✅ Segmentation model loaded (CPU)")
|
| 77 |
except Exception as e:
|
| 78 |
logging.warning(f"Segmentation model not available: {e}")
|
|
|
|
| 79 |
if "cls" not in models_cache:
|
| 80 |
try:
|
| 81 |
models_cache["cls"] = load_classification_pipeline(HF_TOKEN)
|
| 82 |
logging.info("✅ Classification pipeline loaded (CPU)")
|
| 83 |
except Exception as e:
|
| 84 |
logging.warning(f"Classification pipeline not available: {e}")
|
|
|
|
| 85 |
if "embedding_model" not in models_cache:
|
| 86 |
try:
|
| 87 |
models_cache["embedding_model"] = load_embedding_model()
|
|
@@ -90,9 +102,11 @@ def initialize_cpu_models():
|
|
| 90 |
logging.warning(f"Embedding model not available: {e}")
|
| 91 |
|
| 92 |
def setup_knowledge_base():
|
|
|
|
| 93 |
global knowledge_base_cache
|
| 94 |
if "vector_store" in knowledge_base_cache:
|
| 95 |
return
|
|
|
|
| 96 |
docs = []
|
| 97 |
for pdf_path in GUIDELINE_PDFS:
|
| 98 |
if os.path.exists(pdf_path):
|
|
@@ -102,6 +116,7 @@ def setup_knowledge_base():
|
|
| 102 |
logging.info(f"Loaded PDF: {pdf_path}")
|
| 103 |
except Exception as e:
|
| 104 |
logging.warning(f"Failed to load PDF {pdf_path}: {e}")
|
|
|
|
| 105 |
if docs and "embedding_model" in models_cache:
|
| 106 |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 107 |
chunks = splitter.split_documents(docs)
|
|
@@ -111,7 +126,7 @@ def setup_knowledge_base():
|
|
| 111 |
knowledge_base_cache["vector_store"] = None
|
| 112 |
logging.warning("Knowledge base unavailable")
|
| 113 |
|
| 114 |
-
# Initialize models
|
| 115 |
initialize_cpu_models()
|
| 116 |
setup_knowledge_base()
|
| 117 |
|
|
@@ -125,6 +140,8 @@ def generate_medgemma_report(
|
|
| 125 |
segmentation_image_path,
|
| 126 |
max_new_tokens=None,
|
| 127 |
):
|
|
|
|
|
|
|
| 128 |
import torch
|
| 129 |
from transformers import pipeline
|
| 130 |
from PIL import Image
|
|
@@ -141,6 +158,7 @@ def generate_medgemma_report(
|
|
| 141 |
"patient context."
|
| 142 |
)
|
| 143 |
|
|
|
|
| 144 |
if not hasattr(generate_medgemma_report, "_pipe"):
|
| 145 |
try:
|
| 146 |
generate_medgemma_report._pipe = pipeline(
|
|
@@ -158,16 +176,44 @@ def generate_medgemma_report(
|
|
| 158 |
|
| 159 |
pipe = generate_medgemma_report._pipe
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
msgs = [
|
| 162 |
{"role": "system", "content": [{"type": "text", "text": default_system_prompt}]},
|
| 163 |
{"role": "user", "content": []},
|
| 164 |
]
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
-
prompt = f"## Patient\n{patient_info}\n## Wound Type: {visual_results.get('wound_type','Unknown')}"
|
| 171 |
msgs[1]["content"].append({"type": "text", "text": prompt})
|
| 172 |
|
| 173 |
try:
|
|
@@ -188,176 +234,492 @@ class AIProcessor:
|
|
| 188 |
self.hf_token = HF_TOKEN
|
| 189 |
|
| 190 |
def perform_visual_analysis(self, image_pil: Image.Image) -> dict:
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
|
|
|
| 199 |
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
if
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
ov = region.copy()
|
| 236 |
-
ov[mask_rs == 1] = [0, 0, 255]
|
| 237 |
-
seg_vis = cv2.addWeighted(region, 0.7, ov, 0.3, 0)
|
| 238 |
-
seg_path = f"{self.uploads_dir}/analysis/segmentation_{ts}.png"
|
| 239 |
-
cv2.imwrite(seg_path, seg_vis)
|
| 240 |
-
|
| 241 |
-
# Find contours
|
| 242 |
-
cnts, _ = cv2.findContours(mask_rs, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 243 |
-
if cnts:
|
| 244 |
-
cnt = max(cnts, key=cv2.contourArea)
|
| 245 |
-
x, y, w_box, h_box = cv2.boundingRect(cnt)
|
| 246 |
-
length = round(h_box / self.px_per_cm, 2)
|
| 247 |
-
breadth = round(w_box / self.px_per_cm, 2)
|
| 248 |
-
area = round(cv2.contourArea(cnt) / (self.px_per_cm ** 2), 2)
|
| 249 |
-
except Exception as e:
|
| 250 |
-
logging.warning(f"Segmentation processing error: {e}")
|
| 251 |
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
def query_guidelines(self, query: str) -> str:
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
f"
|
| 295 |
-
f"
|
| 296 |
-
|
| 297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
|
| 299 |
def save_and_commit_image(self, image_pil: Image.Image) -> str:
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
-
def full_analysis_pipeline(self,
|
|
|
|
| 318 |
try:
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
info
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
except Exception as e:
|
| 326 |
logging.error(f"Pipeline error: {e}")
|
| 327 |
-
return {
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
try:
|
|
|
|
| 337 |
age = questionnaire_data.get('patient_age', 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
if age > 65:
|
| 339 |
-
risk_factors.append("Advanced age (>65)")
|
|
|
|
| 340 |
elif age > 50:
|
| 341 |
-
risk_factors.append("Older adult (50-65)")
|
|
|
|
| 342 |
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
|
|
|
|
| 347 |
pain = questionnaire_data.get('pain_level', 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
if pain >= 7:
|
| 349 |
-
risk_factors.append("High pain level")
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
except Exception as e:
|
| 362 |
logging.error(f"Risk assessment error: {e}")
|
| 363 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
# =============== LAZY LOADING FUNCTIONS (CPU-SAFE) ===============
|
| 38 |
def load_yolo_model(yolo_model_path):
|
| 39 |
+
"""Lazy import and load YOLO model to avoid CUDA initialization."""
|
| 40 |
from ultralytics import YOLO
|
| 41 |
return YOLO(yolo_model_path)
|
| 42 |
|
| 43 |
def load_segmentation_model(seg_model_path):
|
| 44 |
+
"""Lazy import and load segmentation model."""
|
| 45 |
+
import tensorflow as tf
|
| 46 |
+
tf.config.set_visible_devices([], 'GPU') # Force CPU for TensorFlow
|
| 47 |
from tensorflow.keras.models import load_model
|
| 48 |
return load_model(seg_model_path, compile=False)
|
| 49 |
|
| 50 |
def load_classification_pipeline(hf_token):
|
| 51 |
+
"""Lazy import and load classification pipeline (CPU only)."""
|
| 52 |
from transformers import pipeline
|
| 53 |
return pipeline(
|
| 54 |
"image-classification",
|
|
|
|
| 58 |
)
|
| 59 |
|
| 60 |
def load_embedding_model():
|
| 61 |
+
"""Load embedding model for knowledge base."""
|
| 62 |
return HuggingFaceEmbeddings(
|
| 63 |
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 64 |
model_kwargs={"device": "cpu"}
|
|
|
|
| 66 |
|
| 67 |
# =============== MODEL INITIALIZATION ===============
|
| 68 |
def initialize_cpu_models():
|
| 69 |
+
"""Initialize all CPU-only models once."""
|
| 70 |
global models_cache
|
| 71 |
+
|
| 72 |
if HF_TOKEN:
|
| 73 |
HfFolder.save_token(HF_TOKEN)
|
| 74 |
logging.info("✅ HuggingFace token set")
|
| 75 |
+
|
| 76 |
if "det" not in models_cache:
|
| 77 |
try:
|
| 78 |
models_cache["det"] = load_yolo_model(YOLO_MODEL_PATH)
|
| 79 |
logging.info("✅ YOLO model loaded (CPU only)")
|
| 80 |
except Exception as e:
|
| 81 |
logging.error(f"YOLO load failed: {e}")
|
| 82 |
+
|
| 83 |
if "seg" not in models_cache:
|
| 84 |
try:
|
| 85 |
models_cache["seg"] = load_segmentation_model(SEG_MODEL_PATH)
|
| 86 |
logging.info("✅ Segmentation model loaded (CPU)")
|
| 87 |
except Exception as e:
|
| 88 |
logging.warning(f"Segmentation model not available: {e}")
|
| 89 |
+
|
| 90 |
if "cls" not in models_cache:
|
| 91 |
try:
|
| 92 |
models_cache["cls"] = load_classification_pipeline(HF_TOKEN)
|
| 93 |
logging.info("✅ Classification pipeline loaded (CPU)")
|
| 94 |
except Exception as e:
|
| 95 |
logging.warning(f"Classification pipeline not available: {e}")
|
| 96 |
+
|
| 97 |
if "embedding_model" not in models_cache:
|
| 98 |
try:
|
| 99 |
models_cache["embedding_model"] = load_embedding_model()
|
|
|
|
| 102 |
logging.warning(f"Embedding model not available: {e}")
|
| 103 |
|
| 104 |
def setup_knowledge_base():
|
| 105 |
+
"""Load PDF documents and create FAISS vector store."""
|
| 106 |
global knowledge_base_cache
|
| 107 |
if "vector_store" in knowledge_base_cache:
|
| 108 |
return
|
| 109 |
+
|
| 110 |
docs = []
|
| 111 |
for pdf_path in GUIDELINE_PDFS:
|
| 112 |
if os.path.exists(pdf_path):
|
|
|
|
| 116 |
logging.info(f"Loaded PDF: {pdf_path}")
|
| 117 |
except Exception as e:
|
| 118 |
logging.warning(f"Failed to load PDF {pdf_path}: {e}")
|
| 119 |
+
|
| 120 |
if docs and "embedding_model" in models_cache:
|
| 121 |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 122 |
chunks = splitter.split_documents(docs)
|
|
|
|
| 126 |
knowledge_base_cache["vector_store"] = None
|
| 127 |
logging.warning("Knowledge base unavailable")
|
| 128 |
|
| 129 |
+
# Initialize models on app startup
|
| 130 |
initialize_cpu_models()
|
| 131 |
setup_knowledge_base()
|
| 132 |
|
|
|
|
| 140 |
segmentation_image_path,
|
| 141 |
max_new_tokens=None,
|
| 142 |
):
|
| 143 |
+
"""GPU-only function for MedGemma report generation."""
|
| 144 |
+
# Import GPU libraries ONLY here
|
| 145 |
import torch
|
| 146 |
from transformers import pipeline
|
| 147 |
from PIL import Image
|
|
|
|
| 158 |
"patient context."
|
| 159 |
)
|
| 160 |
|
| 161 |
+
# Lazy-load MedGemma pipeline on GPU
|
| 162 |
if not hasattr(generate_medgemma_report, "_pipe"):
|
| 163 |
try:
|
| 164 |
generate_medgemma_report._pipe = pipeline(
|
|
|
|
| 176 |
|
| 177 |
pipe = generate_medgemma_report._pipe
|
| 178 |
|
| 179 |
+
# Load the original image that was analyzed
|
| 180 |
+
original_image = None
|
| 181 |
+
if detection_image_path and os.path.exists(detection_image_path.replace('detection_', 'original_')):
|
| 182 |
+
original_image = Image.open(detection_image_path.replace('detection_', 'original_'))
|
| 183 |
+
elif segmentation_image_path and os.path.exists(segmentation_image_path.replace('segmentation_', 'original_')):
|
| 184 |
+
original_image = Image.open(segmentation_image_path.replace('segmentation_', 'original_'))
|
| 185 |
+
|
| 186 |
+
# Compose messages
|
| 187 |
msgs = [
|
| 188 |
{"role": "system", "content": [{"type": "text", "text": default_system_prompt}]},
|
| 189 |
{"role": "user", "content": []},
|
| 190 |
]
|
| 191 |
|
| 192 |
+
# Attach images if available
|
| 193 |
+
if original_image:
|
| 194 |
+
msgs[1]["content"].append({"type": "image", "image": original_image})
|
| 195 |
+
else:
|
| 196 |
+
# Fallback to detection or segmentation images
|
| 197 |
+
for path in (detection_image_path, segmentation_image_path):
|
| 198 |
+
if path and os.path.exists(path):
|
| 199 |
+
msgs[1]["content"].append({"type": "image", "image": Image.open(path)})
|
| 200 |
+
break
|
| 201 |
+
|
| 202 |
+
# Attach text prompt
|
| 203 |
+
prompt = f"""## Patient Information
|
| 204 |
+
{patient_info}
|
| 205 |
+
|
| 206 |
+
## Visual Analysis Results
|
| 207 |
+
- Wound Type: {visual_results.get('wound_type','Unknown')}
|
| 208 |
+
- Dimensions: {visual_results.get('length_cm', 0)} x {visual_results.get('breadth_cm', 0)} cm
|
| 209 |
+
- Surface Area: {visual_results.get('surface_area_cm2', 0)} cm²
|
| 210 |
+
- Detection Confidence: {visual_results.get('detection_confidence', 0):.2f}
|
| 211 |
+
|
| 212 |
+
## Clinical Guidelines Context
|
| 213 |
+
{guideline_context[:1500]}...
|
| 214 |
+
|
| 215 |
+
Please provide a comprehensive wound care assessment and treatment recommendations based on the image and provided information."""
|
| 216 |
|
|
|
|
| 217 |
msgs[1]["content"].append({"type": "text", "text": prompt})
|
| 218 |
|
| 219 |
try:
|
|
|
|
| 234 |
self.hf_token = HF_TOKEN
|
| 235 |
|
| 236 |
def perform_visual_analysis(self, image_pil: Image.Image) -> dict:
|
| 237 |
+
"""Performs the full visual analysis pipeline."""
|
| 238 |
+
try:
|
| 239 |
+
# Convert PIL to OpenCV format
|
| 240 |
+
image_cv = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)
|
| 241 |
+
|
| 242 |
+
# YOLO Detection
|
| 243 |
+
yolo_model = self.models_cache.get("det")
|
| 244 |
+
if yolo_model is None:
|
| 245 |
+
raise RuntimeError("YOLO model ('det') not loaded")
|
| 246 |
|
| 247 |
+
results = yolo_model.predict(image_cv, verbose=False, device="cpu")
|
| 248 |
+
|
| 249 |
+
if not results or not results[0].boxes or len(results[0].boxes) == 0:
|
| 250 |
+
raise ValueError("No wound detected in the image")
|
| 251 |
|
| 252 |
+
# Extract bounding box - handle different output formats
|
| 253 |
+
boxes_data = results[0].boxes.xyxy.cpu().numpy()
|
| 254 |
+
|
| 255 |
+
if len(boxes_data.shape) == 1:
|
| 256 |
+
# Single detection case
|
| 257 |
+
if len(boxes_data) != 4:
|
| 258 |
+
raise ValueError(f"Expected 4 coordinates, got {len(boxes_data)}")
|
| 259 |
+
x1, y1, x2, y2 = boxes_data.astype(int)
|
| 260 |
+
else:
|
| 261 |
+
# Multiple detections - take the first one
|
| 262 |
+
if boxes_data.shape[1] != 4:
|
| 263 |
+
raise ValueError(f"Expected 4 coordinates per box, got {boxes_data.shape[1]}")
|
| 264 |
+
x1, y1, x2, y2 = boxes_data[0].astype(int)
|
| 265 |
+
|
| 266 |
+
# Validate coordinates
|
| 267 |
+
if x1 >= x2 or y1 >= y2 or x1 < 0 or y1 < 0:
|
| 268 |
+
raise ValueError("Invalid bounding box coordinates")
|
| 269 |
+
|
| 270 |
+
# Extract wound region
|
| 271 |
+
detected_region_cv = image_cv[y1:y2, x1:x2]
|
| 272 |
+
|
| 273 |
+
if detected_region_cv.size == 0:
|
| 274 |
+
raise ValueError("Detected region is empty")
|
| 275 |
+
|
| 276 |
+
# Save detection visualization
|
| 277 |
+
det_vis = image_cv.copy()
|
| 278 |
+
cv2.rectangle(det_vis, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 279 |
+
os.makedirs(f"{self.uploads_dir}/analysis", exist_ok=True)
|
| 280 |
+
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 281 |
+
det_path = f"{self.uploads_dir}/analysis/detection_{ts}.png"
|
| 282 |
+
cv2.imwrite(det_path, det_vis)
|
| 283 |
+
|
| 284 |
+
# Save original image for reference
|
| 285 |
+
original_path = f"{self.uploads_dir}/analysis/original_{ts}.png"
|
| 286 |
+
cv2.imwrite(original_path, image_cv)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
+
# Segmentation Analysis
|
| 289 |
+
length = breadth = area = 0
|
| 290 |
+
seg_path = None
|
| 291 |
+
|
| 292 |
+
seg_model = self.models_cache.get("seg")
|
| 293 |
+
if seg_model is not None:
|
| 294 |
+
try:
|
| 295 |
+
# Get input shape from model
|
| 296 |
+
input_shape = seg_model.input_shape
|
| 297 |
+
if len(input_shape) >= 3:
|
| 298 |
+
h, w = input_shape[1:3]
|
| 299 |
+
else:
|
| 300 |
+
h, w = 256, 256 # Default fallback
|
| 301 |
+
|
| 302 |
+
# Prepare input for segmentation
|
| 303 |
+
resized = cv2.resize(detected_region_cv, (w, h))
|
| 304 |
+
normalized_input = np.expand_dims(resized / 255.0, 0)
|
| 305 |
+
|
| 306 |
+
# Predict mask
|
| 307 |
+
mask_pred = seg_model.predict(normalized_input, verbose=0)
|
| 308 |
+
|
| 309 |
+
# Handle different output formats
|
| 310 |
+
if len(mask_pred.shape) == 4:
|
| 311 |
+
mask_np = (mask_pred[0, :, :, 0] > 0.5).astype(np.uint8)
|
| 312 |
+
elif len(mask_pred.shape) == 3:
|
| 313 |
+
mask_np = (mask_pred[0, :, :] > 0.5).astype(np.uint8)
|
| 314 |
+
else:
|
| 315 |
+
raise ValueError(f"Unexpected segmentation output shape: {mask_pred.shape}")
|
| 316 |
+
|
| 317 |
+
# Resize mask back to detection region size
|
| 318 |
+
mask_resized = cv2.resize(
|
| 319 |
+
mask_np * 255,
|
| 320 |
+
(detected_region_cv.shape[1], detected_region_cv.shape[0]),
|
| 321 |
+
interpolation=cv2.INTER_NEAREST
|
| 322 |
+
)
|
| 323 |
+
mask_resized = (mask_resized > 127).astype(np.uint8)
|
| 324 |
+
|
| 325 |
+
# Create segmentation visualization
|
| 326 |
+
overlay = detected_region_cv.copy()
|
| 327 |
+
overlay[mask_resized == 1] = [0, 0, 255] # Red overlay for wound area
|
| 328 |
+
seg_vis = cv2.addWeighted(detected_region_cv, 0.7, overlay, 0.3, 0)
|
| 329 |
+
|
| 330 |
+
seg_path = f"{self.uploads_dir}/analysis/segmentation_{ts}.png"
|
| 331 |
+
cv2.imwrite(seg_path, seg_vis)
|
| 332 |
+
|
| 333 |
+
# Calculate measurements
|
| 334 |
+
contours, _ = cv2.findContours(mask_resized, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 335 |
+
if contours:
|
| 336 |
+
# Get the largest contour
|
| 337 |
+
largest_contour = max(contours, key=cv2.contourArea)
|
| 338 |
+
|
| 339 |
+
# Calculate bounding rectangle
|
| 340 |
+
bbox = cv2.boundingRect(largest_contour)
|
| 341 |
+
if len(bbox) == 4:
|
| 342 |
+
x, y, w_box, h_box = bbox
|
| 343 |
+
length = round(h_box / self.px_per_cm, 2)
|
| 344 |
+
breadth = round(w_box / self.px_per_cm, 2)
|
| 345 |
+
area = round(cv2.contourArea(largest_contour) / (self.px_per_cm ** 2), 2)
|
| 346 |
+
else:
|
| 347 |
+
logging.warning(f"Unexpected bounding rect format: {bbox}")
|
| 348 |
+
else:
|
| 349 |
+
logging.info("No contours found in segmentation mask")
|
| 350 |
+
|
| 351 |
+
except Exception as seg_error:
|
| 352 |
+
logging.error(f"Segmentation processing error: {seg_error}")
|
| 353 |
+
seg_path = None
|
| 354 |
+
|
| 355 |
+
# Wound Classification
|
| 356 |
+
wound_type = "Unknown"
|
| 357 |
+
cls_pipeline = self.models_cache.get("cls")
|
| 358 |
+
if cls_pipeline is not None:
|
| 359 |
+
try:
|
| 360 |
+
detected_image_pil = Image.fromarray(cv2.cvtColor(detected_region_cv, cv2.COLOR_BGR2RGB))
|
| 361 |
+
predictions = cls_pipeline(detected_image_pil)
|
| 362 |
+
if predictions and len(predictions) > 0:
|
| 363 |
+
best_pred = max(predictions, key=lambda x: x.get("score", 0))
|
| 364 |
+
wound_type = best_pred.get("label", "Unknown")
|
| 365 |
+
except Exception as cls_error:
|
| 366 |
+
logging.warning(f"Classification failed: {cls_error}")
|
| 367 |
+
|
| 368 |
+
# Extract confidence score
|
| 369 |
+
confidence = 0.0
|
| 370 |
+
if results[0].boxes.conf is not None and len(results[0].boxes.conf) > 0:
|
| 371 |
+
confidence = float(results[0].boxes.conf[0].cpu().item())
|
| 372 |
+
|
| 373 |
+
return {
|
| 374 |
+
"wound_type": wound_type,
|
| 375 |
+
"length_cm": length,
|
| 376 |
+
"breadth_cm": breadth,
|
| 377 |
+
"surface_area_cm2": area,
|
| 378 |
+
"detection_confidence": confidence,
|
| 379 |
+
"detection_image_path": det_path,
|
| 380 |
+
"segmentation_image_path": seg_path,
|
| 381 |
+
"original_image_path": original_path
|
| 382 |
+
}
|
| 383 |
+
|
| 384 |
+
except Exception as e:
|
| 385 |
+
logging.error(f"Visual analysis failed: {e}")
|
| 386 |
+
raise e
|
| 387 |
|
| 388 |
def query_guidelines(self, query: str) -> str:
|
| 389 |
+
"""Query the knowledge base for relevant information."""
|
| 390 |
+
try:
|
| 391 |
+
vector_store = self.knowledge_base_cache.get("vector_store")
|
| 392 |
+
if not vector_store:
|
| 393 |
+
return "Clinical guidelines unavailable - knowledge base not loaded"
|
| 394 |
+
|
| 395 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 10})
|
| 396 |
+
docs = retriever.invoke(query)
|
| 397 |
+
|
| 398 |
+
if not docs:
|
| 399 |
+
return "No relevant guidelines found for the query"
|
| 400 |
+
|
| 401 |
+
context = "\n\n".join([
|
| 402 |
+
f"Source: {doc.metadata.get('source', 'Unknown')}, Page: {doc.metadata.get('page', 'N/A')}\n{doc.page_content}"
|
| 403 |
+
for doc in docs
|
| 404 |
+
])
|
| 405 |
+
|
| 406 |
+
return context
|
| 407 |
+
|
| 408 |
+
except Exception as e:
|
| 409 |
+
logging.error(f"Guidelines query failed: {e}")
|
| 410 |
+
return f"Guidelines query failed: {str(e)}"
|
| 411 |
+
|
| 412 |
+
def generate_final_report(
|
| 413 |
+
self, patient_info: str, visual_results: dict, guideline_context: str,
|
| 414 |
+
image_pil: Image.Image, max_new_tokens: int = None
|
| 415 |
+
) -> str:
|
| 416 |
+
"""Generate final report using MedGemma GPU pipeline."""
|
| 417 |
+
try:
|
| 418 |
+
det_path = visual_results.get("detection_image_path", "")
|
| 419 |
+
seg_path = visual_results.get("segmentation_image_path", "")
|
| 420 |
+
|
| 421 |
+
report = generate_medgemma_report(
|
| 422 |
+
patient_info, visual_results, guideline_context,
|
| 423 |
+
det_path, seg_path, max_new_tokens
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
if report and report.strip():
|
| 427 |
+
return report
|
| 428 |
+
else:
|
| 429 |
+
return self._generate_fallback_report(patient_info, visual_results, guideline_context)
|
| 430 |
+
|
| 431 |
+
except Exception as e:
|
| 432 |
+
logging.error(f"MedGemma report generation failed: {e}")
|
| 433 |
+
return self._generate_fallback_report(patient_info, visual_results, guideline_context)
|
| 434 |
+
|
| 435 |
+
def _generate_fallback_report(
|
| 436 |
+
self, patient_info: str, visual_results: dict, guideline_context: str
|
| 437 |
+
) -> str:
|
| 438 |
+
"""Generate fallback report if MedGemma fails."""
|
| 439 |
+
|
| 440 |
+
report = f"""# Wound Analysis Report
|
| 441 |
+
|
| 442 |
+
## Patient Information
|
| 443 |
+
{patient_info}
|
| 444 |
+
|
| 445 |
+
## Visual Analysis Results
|
| 446 |
+
- **Wound Type**: {visual_results.get('wound_type', 'Unknown')}
|
| 447 |
+
- **Dimensions**: {visual_results.get('length_cm', 0)} cm × {visual_results.get('breadth_cm', 0)} cm
|
| 448 |
+
- **Surface Area**: {visual_results.get('surface_area_cm2', 0)} cm²
|
| 449 |
+
- **Detection Confidence**: {visual_results.get('detection_confidence', 0):.2f}
|
| 450 |
+
|
| 451 |
+
## Analysis Images
|
| 452 |
+
- **Detection Image**: {visual_results.get('detection_image_path', 'N/A')}
|
| 453 |
+
- **Segmentation Image**: {visual_results.get('segmentation_image_path', 'N/A')}
|
| 454 |
+
|
| 455 |
+
## Clinical Guidelines Context
|
| 456 |
+
{guideline_context[:1000]}{'...' if len(guideline_context) > 1000 else ''}
|
| 457 |
+
|
| 458 |
+
## Assessment Summary
|
| 459 |
+
Based on the automated visual analysis, the wound has been classified as **{visual_results.get('wound_type', 'Unknown')}** with measurable dimensions. The detection confidence indicates the reliability of the automated assessment.
|
| 460 |
+
|
| 461 |
+
## Recommendations
|
| 462 |
+
1. **Clinical Evaluation**: This automated analysis should be supplemented with professional clinical assessment
|
| 463 |
+
2. **Documentation**: Regular monitoring and documentation of wound progression is recommended
|
| 464 |
+
3. **Treatment Planning**: Develop appropriate treatment protocol based on wound characteristics and patient factors
|
| 465 |
+
4. **Follow-up**: Schedule appropriate follow-up intervals based on wound severity and healing progress
|
| 466 |
+
|
| 467 |
+
## Important Notes
|
| 468 |
+
- This is an automated analysis and should not replace professional medical judgment
|
| 469 |
+
- All measurements are estimates based on computer vision algorithms
|
| 470 |
+
- Clinical correlation is essential for proper diagnosis and treatment planning
|
| 471 |
+
- Consider patient-specific factors not captured in this automated assessment
|
| 472 |
+
|
| 473 |
+
## Disclaimer
|
| 474 |
+
This automated analysis is provided for informational purposes only and does not constitute medical advice. Always consult with qualified healthcare professionals for proper diagnosis and treatment.
|
| 475 |
+
"""
|
| 476 |
+
return report
|
| 477 |
|
| 478 |
def save_and_commit_image(self, image_pil: Image.Image) -> str:
|
| 479 |
+
"""Save image locally and optionally commit to HF dataset."""
|
| 480 |
+
try:
|
| 481 |
+
os.makedirs(self.uploads_dir, exist_ok=True)
|
| 482 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 483 |
+
filename = f"{timestamp}.png"
|
| 484 |
+
path = os.path.join(self.uploads_dir, filename)
|
| 485 |
+
|
| 486 |
+
# Save image
|
| 487 |
+
image_pil.convert("RGB").save(path)
|
| 488 |
+
logging.info(f"✅ Image saved locally: {path}")
|
| 489 |
+
|
| 490 |
+
# Upload to HuggingFace dataset if configured
|
| 491 |
+
if self.hf_token and self.dataset_id:
|
| 492 |
+
try:
|
| 493 |
+
api = HfApi()
|
| 494 |
+
api.upload_file(
|
| 495 |
+
path_or_fileobj=path,
|
| 496 |
+
path_in_repo=f"images/{filename}",
|
| 497 |
+
repo_id=self.dataset_id,
|
| 498 |
+
repo_type="dataset",
|
| 499 |
+
token=self.hf_token,
|
| 500 |
+
commit_message=f"Upload wound image: {filename}"
|
| 501 |
+
)
|
| 502 |
+
logging.info("✅ Image committed to HF dataset")
|
| 503 |
+
except Exception as e:
|
| 504 |
+
logging.warning(f"HF upload failed: {e}")
|
| 505 |
+
|
| 506 |
+
return path
|
| 507 |
+
|
| 508 |
+
except Exception as e:
|
| 509 |
+
logging.error(f"Failed to save image: {e}")
|
| 510 |
+
return ""
|
| 511 |
|
| 512 |
+
def full_analysis_pipeline(self, image_pil: Image.Image, questionnaire_data: dict) -> dict:
|
| 513 |
+
"""Run full analysis pipeline."""
|
| 514 |
try:
|
| 515 |
+
# Save image first
|
| 516 |
+
saved_path = self.save_and_commit_image(image_pil)
|
| 517 |
+
logging.info(f"Image saved: {saved_path}")
|
| 518 |
+
|
| 519 |
+
# Perform visual analysis
|
| 520 |
+
visual_results = self.perform_visual_analysis(image_pil)
|
| 521 |
+
logging.info(f"Visual analysis completed: {visual_results}")
|
| 522 |
+
|
| 523 |
+
# Process questionnaire data
|
| 524 |
+
patient_info = ", ".join(f"{k}: {v}" for k, v in questionnaire_data.items() if v)
|
| 525 |
+
if not patient_info:
|
| 526 |
+
patient_info = "No patient information provided"
|
| 527 |
+
|
| 528 |
+
# Query guidelines
|
| 529 |
+
query = f"wound care treatment for {visual_results.get('wound_type', 'wound')} "
|
| 530 |
+
if questionnaire_data.get('diabetic') == 'Yes':
|
| 531 |
+
query += "diabetic patient "
|
| 532 |
+
if questionnaire_data.get('infection') == 'Yes':
|
| 533 |
+
query += "with infection signs "
|
| 534 |
+
|
| 535 |
+
guideline_context = self.query_guidelines(query)
|
| 536 |
+
logging.info("Guidelines queried successfully")
|
| 537 |
+
|
| 538 |
+
# Generate final report
|
| 539 |
+
report = self.generate_final_report(patient_info, visual_results, guideline_context, image_pil)
|
| 540 |
+
logging.info("Report generated successfully")
|
| 541 |
+
|
| 542 |
+
return {
|
| 543 |
+
'success': True,
|
| 544 |
+
'visual_analysis': visual_results,
|
| 545 |
+
'report': report,
|
| 546 |
+
'saved_image_path': saved_path,
|
| 547 |
+
'guideline_context': guideline_context[:500] + "..." if len(guideline_context) > 500 else guideline_context
|
| 548 |
+
}
|
| 549 |
+
|
| 550 |
except Exception as e:
|
| 551 |
logging.error(f"Pipeline error: {e}")
|
| 552 |
+
return {
|
| 553 |
+
'success': False,
|
| 554 |
+
'error': str(e),
|
| 555 |
+
'visual_analysis': {},
|
| 556 |
+
'report': f"Analysis failed: {str(e)}",
|
| 557 |
+
'saved_image_path': None,
|
| 558 |
+
'guideline_context': ""
|
| 559 |
+
}
|
| 560 |
+
|
| 561 |
+
def analyze_wound(self, image, questionnaire_data: dict) -> dict:
|
| 562 |
+
"""Main analysis entry point - maintains original function name."""
|
| 563 |
+
try:
|
| 564 |
+
# Handle different image input formats
|
| 565 |
+
if isinstance(image, str):
|
| 566 |
+
if os.path.exists(image):
|
| 567 |
+
image_pil = Image.open(image)
|
| 568 |
+
else:
|
| 569 |
+
raise ValueError(f"Image file not found: {image}")
|
| 570 |
+
elif isinstance(image, Image.Image):
|
| 571 |
+
image_pil = image
|
| 572 |
+
elif isinstance(image, np.ndarray):
|
| 573 |
+
image_pil = Image.fromarray(image)
|
| 574 |
+
else:
|
| 575 |
+
raise ValueError(f"Unsupported image type: {type(image)}")
|
| 576 |
+
|
| 577 |
+
return self.full_analysis_pipeline(image_pil, questionnaire_data)
|
| 578 |
+
|
| 579 |
+
except Exception as e:
|
| 580 |
+
logging.error(f"Wound analysis error: {e}")
|
| 581 |
+
return {
|
| 582 |
+
'success': False,
|
| 583 |
+
'error': str(e),
|
| 584 |
+
'visual_analysis': {},
|
| 585 |
+
'report': f"Analysis initialization failed: {str(e)}",
|
| 586 |
+
'saved_image_path': None,
|
| 587 |
+
'guideline_context': ""
|
| 588 |
+
}
|
| 589 |
+
|
| 590 |
+
def _assess_risk_legacy(self, questionnaire_data: dict) -> dict:
|
| 591 |
+
"""Legacy risk assessment function - maintains original function name."""
|
| 592 |
+
risk_factors = []
|
| 593 |
+
risk_score = 0
|
| 594 |
+
|
| 595 |
try:
|
| 596 |
+
# Age assessment
|
| 597 |
age = questionnaire_data.get('patient_age', 0)
|
| 598 |
+
if isinstance(age, str):
|
| 599 |
+
try:
|
| 600 |
+
age = int(age)
|
| 601 |
+
except ValueError:
|
| 602 |
+
age = 0
|
| 603 |
+
|
| 604 |
if age > 65:
|
| 605 |
+
risk_factors.append("Advanced age (>65)")
|
| 606 |
+
risk_score += 2
|
| 607 |
elif age > 50:
|
| 608 |
+
risk_factors.append("Older adult (50-65)")
|
| 609 |
+
risk_score += 1
|
| 610 |
|
| 611 |
+
# Wound duration assessment
|
| 612 |
+
duration = str(questionnaire_data.get('wound_duration', '')).lower()
|
| 613 |
+
if any(term in duration for term in ['month', 'months', 'year', 'years']):
|
| 614 |
+
risk_factors.append("Chronic wound (>4 weeks)")
|
| 615 |
+
risk_score += 3
|
| 616 |
+
elif any(term in duration for term in ['week', 'weeks']):
|
| 617 |
+
# Try to extract number of weeks
|
| 618 |
+
import re
|
| 619 |
+
weeks_match = re.search(r'(\d+)\s*week', duration)
|
| 620 |
+
if weeks_match and int(weeks_match.group(1)) > 4:
|
| 621 |
+
risk_factors.append("Chronic wound (>4 weeks)")
|
| 622 |
+
risk_score += 3
|
| 623 |
|
| 624 |
+
# Pain level assessment
|
| 625 |
pain = questionnaire_data.get('pain_level', 0)
|
| 626 |
+
if isinstance(pain, str):
|
| 627 |
+
try:
|
| 628 |
+
pain = float(pain)
|
| 629 |
+
except ValueError:
|
| 630 |
+
pain = 0
|
| 631 |
+
|
| 632 |
if pain >= 7:
|
| 633 |
+
risk_factors.append("High pain level (≥7/10)")
|
| 634 |
+
risk_score += 2
|
| 635 |
+
elif pain >= 5:
|
| 636 |
+
risk_factors.append("Moderate pain level (5-6/10)")
|
| 637 |
+
risk_score += 1
|
| 638 |
+
|
| 639 |
+
# Medical history assessment
|
| 640 |
+
medical_history = str(questionnaire_data.get('medical_history', '')).lower()
|
| 641 |
+
diabetic_status = str(questionnaire_data.get('diabetic', '')).lower()
|
| 642 |
+
|
| 643 |
+
if 'diabetes' in medical_history or 'yes' in diabetic_status:
|
| 644 |
+
risk_factors.append("Diabetes mellitus")
|
| 645 |
+
risk_score += 3
|
| 646 |
+
|
| 647 |
+
if any(term in medical_history for term in ['vascular', 'circulation', 'arterial', 'venous']):
|
| 648 |
+
risk_factors.append("Vascular disease")
|
| 649 |
+
risk_score += 2
|
| 650 |
+
|
| 651 |
+
if any(term in medical_history for term in ['immune', 'immunocompromised', 'steroid', 'chemotherapy']):
|
| 652 |
+
risk_factors.append("Immune system compromise")
|
| 653 |
+
risk_score += 2
|
| 654 |
+
|
| 655 |
+
if any(term in medical_history for term in ['smoking', 'smoker', 'tobacco']):
|
| 656 |
+
risk_factors.append("Smoking history")
|
| 657 |
+
risk_score += 2
|
| 658 |
+
|
| 659 |
+
# Infection signs
|
| 660 |
+
infection_signs = str(questionnaire_data.get('infection', '')).lower()
|
| 661 |
+
if 'yes' in infection_signs:
|
| 662 |
+
risk_factors.append("Signs of infection present")
|
| 663 |
+
risk_score += 3
|
| 664 |
+
|
| 665 |
+
# Moisture level
|
| 666 |
+
moisture = str(questionnaire_data.get('moisture', '')).lower()
|
| 667 |
+
if any(term in moisture for term in ['wet', 'heavy', 'excessive']):
|
| 668 |
+
risk_factors.append("Excessive wound exudate")
|
| 669 |
+
risk_score += 1
|
| 670 |
+
|
| 671 |
+
# Determine risk level
|
| 672 |
+
if risk_score >= 8:
|
| 673 |
+
risk_level = "Very High"
|
| 674 |
+
elif risk_score >= 6:
|
| 675 |
+
risk_level = "High"
|
| 676 |
+
elif risk_score >= 3:
|
| 677 |
+
risk_level = "Moderate"
|
| 678 |
+
else:
|
| 679 |
+
risk_level = "Low"
|
| 680 |
+
|
| 681 |
+
return {
|
| 682 |
+
'risk_score': risk_score,
|
| 683 |
+
'risk_level': risk_level,
|
| 684 |
+
'risk_factors': risk_factors,
|
| 685 |
+
'recommendations': self._get_risk_recommendations(risk_level, risk_factors)
|
| 686 |
+
}
|
| 687 |
+
|
| 688 |
except Exception as e:
|
| 689 |
logging.error(f"Risk assessment error: {e}")
|
| 690 |
+
return {
|
| 691 |
+
'risk_score': 0,
|
| 692 |
+
'risk_level': 'Unknown',
|
| 693 |
+
'risk_factors': [],
|
| 694 |
+
'recommendations': ["Unable to assess risk due to data processing error"]
|
| 695 |
+
}
|
| 696 |
+
|
| 697 |
+
def _get_risk_recommendations(self, risk_level: str, risk_factors: list) -> list:
|
| 698 |
+
"""Generate risk-based recommendations."""
|
| 699 |
+
recommendations = []
|
| 700 |
+
|
| 701 |
+
if risk_level in ["High", "Very High"]:
|
| 702 |
+
recommendations.append("Urgent referral to wound care specialist recommended")
|
| 703 |
+
recommendations.append("Consider daily wound monitoring")
|
| 704 |
+
recommendations.append("Implement aggressive wound care protocol")
|
| 705 |
+
elif risk_level == "Moderate":
|
| 706 |
+
recommendations.append("Regular wound care follow-up every 2-3 days")
|
| 707 |
+
recommendations.append("Monitor for signs of deterioration")
|
| 708 |
+
else:
|
| 709 |
+
recommendations.append("Standard wound care monitoring")
|
| 710 |
+
recommendations.append("Weekly assessment recommended")
|
| 711 |
+
|
| 712 |
+
# Specific recommendations based on risk factors
|
| 713 |
+
if "Diabetes mellitus" in risk_factors:
|
| 714 |
+
recommendations.append("Strict glycemic control essential")
|
| 715 |
+
recommendations.append("Monitor for diabetic complications")
|
| 716 |
+
|
| 717 |
+
if "Signs of infection present" in risk_factors:
|
| 718 |
+
recommendations.append("Consider antibiotic therapy")
|
| 719 |
+
recommendations.append("Increase wound cleaning frequency")
|
| 720 |
+
|
| 721 |
+
if "Excessive wound exudate" in risk_factors:
|
| 722 |
+
recommendations.append("Use high-absorption dressings")
|
| 723 |
+
recommendations.append("More frequent dressing changes may be needed")
|
| 724 |
+
|
| 725 |
+
return recommendations
|