Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| import random | |
| # import spaces #[uncomment to use ZeroGPU] | |
| # from diffusers import SanaPipeline, StableDiffusion3Pipeline, FluxPipeline | |
| from sid import SiDFluxPipeline, SiDSD3Pipeline, SiDSanaPipeline | |
| import torch | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| torch_dtype = torch.float16 | |
| MODEL_OPTIONS = { | |
| "SiD-Flow-SD3-medium": "YGu1998/SiD-Flow-SD3-medium", | |
| "SiDA-Flow-SD3-medium": "YGu1998/SiDA-Flow-SD3-medium", | |
| "SiD-Flow-SD3.5-large": "YGu1998/SiD-Flow-SD3.5-large", | |
| "SiDA-Flow-SD3.5-large": "YGu1998/SiDA-Flow-SD3.5-large", | |
| "SiD-Flow-Sana-0.6B-512-res": "YGu1998/SiD-Flow-Sana-0.6B-512-res", | |
| "SiDA-Flow-Sana-0.6B-512-res": "YGu1998/SiDA-Flow-Sana-0.6B-512-res", | |
| "SiD-Flow-Sana-1.6B-512-res": "YGu1998/SiD-Flow-Sana-1.6B-512-res", | |
| "SiDA-Flow-Sana-1.6B-512-res": "YGu1998/SiDA-Flow-Sana-1.6B-512-res", | |
| "SiD-Flow-Sana-Sprint-0.6B-1024-res": "YGu1998/SiD-Flow-Sana-Sprint-0.6B-1024-res", | |
| "SiDA-Flow-Sana-Sprint-0.6B-1024-res": "YGu1998/SiDA-Flow-Sana-Sprint-0.6B-1024-res", | |
| "SiD-Flow-Sana-Sprint-1.6B-1024-res": "YGu1998/SiD-Flow-Sana-Sprint-1.6B-1024-res", | |
| "SiDA-Flow-Sana-Sprint-1.6B-1024-res": "YGu1998/SiDA-Flow-Sana-Sprint-1.6B-1024-res", | |
| "SiD-Flow-Flux-1024-res": "YGu1998/SiD-Flow-Flux-1024-res", | |
| "SiD-Flow-Flux-512-res": "YGu1998/SiD-Flow-Flux-512-res", | |
| } | |
| def load_model(model_choice): | |
| model_repo_id = MODEL_OPTIONS[model_choice] | |
| time_scale = 1000.0 | |
| if "Sana" in model_choice: | |
| pipe = SiDSanaPipeline.from_pretrained(model_repo_id, torch_dtype=torch.bfloat16) | |
| if "Sprint" in model_choice: | |
| time_scale = 1.0 | |
| elif "SD3" in model_choice: | |
| pipe = SiDSD3Pipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
| elif "Flux" in model_choice: | |
| pipe = SiDFluxPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
| else: | |
| raise ValueError(f"Unknown model type for: {model_choice}") | |
| pipe = pipe.to(device) | |
| return pipe, time_scale | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| # @spaces.GPU #[uncomment to use ZeroGPU] | |
| def infer( | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| num_inference_steps, | |
| model_choice, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| pipe, time_scale = load_model(model_choice) | |
| image = pipe( | |
| prompt=prompt, | |
| guidance_scale=1, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| time_scale=time_scale, | |
| ).images[0] | |
| return image, seed | |
| examples = [ | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "An astronaut riding a green horse", | |
| "A delicious ceviche cheesecake slice", | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(" # SiD-DiT demo") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0, variant="primary") | |
| model_choice = gr.Dropdown( | |
| label="Model Choice", | |
| choices=list(MODEL_OPTIONS.keys()), | |
| value="SiD-Flow-SD3-medium", | |
| ) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, # Replace with defaults that work for your model | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, # Replace with defaults that work for your model | |
| ) | |
| with gr.Row(): | |
| # guidance_scale = gr.Slider( | |
| # label="Guidance scale", | |
| # minimum=0.0, | |
| # maximum=10.0, | |
| # step=0.1, | |
| # value=0.0, # Replace with defaults that work for your model | |
| # ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=4, | |
| step=1, | |
| value=2, # Replace with defaults that work for your model | |
| ) | |
| gr.Examples(examples=examples, inputs=[prompt]) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| num_inference_steps, | |
| model_choice, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |