Sompote's picture
Upload 19 files
c27b543 verified
# source myenv/bin/activate
# deactivate
import streamlit as st
import pandas as pd
import numpy as np
import torch
from torch.utils.data import TensorDataset
import matplotlib.pyplot as plt
import shap
import os
import torch.nn as nn
import math
from pytorch_lightning import LightningModule
from PIL import Image
from joblib import load
# Display logo
logo = Image.open('AI_logo.png')
st.image(logo, width=100)
# Model Components
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=0.1)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class EQ_encoder(nn.Module):
def __init__(self):
super(EQ_encoder, self).__init__()
self.lstm_layer = nn.LSTM(input_size=1, hidden_size=100, num_layers=10, batch_first=True)
self.dense1 = nn.Linear(100, 50)
self.dense2 = nn.Linear(50, 16)
self.relu = nn.ReLU()
def forward(self, x):
output, (hidden_last, cell_last) = self.lstm_layer(x)
last_output = hidden_last[-1]
x = last_output.reshape(x.size(0), -1)
x = self.dense1(x)
x = torch.relu(x)
x = self.dense2(x)
x = torch.relu(x)
return x
class AttentionBlock(nn.Module):
def __init__(self, d_model, num_heads, dropout=0.1):
super(AttentionBlock, self).__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_k = d_model // num_heads
self.num_heads = num_heads
self.w_q = nn.Linear(d_model, d_model)
self.w_k = nn.Linear(d_model, d_model)
self.w_v = nn.Linear(d_model, d_model)
self.w_o = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, query, key, value, mask=None):
batch_size = query.size(0)
query = self.w_q(query).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
key = self.w_k(key).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
value = self.w_v(value).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
scores = torch.matmul(query, key.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.d_k, dtype=torch.float32))
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
attention_weights = torch.softmax(scores, dim=-1)
attention_weights = self.dropout(attention_weights)
output = torch.matmul(attention_weights, value)
output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.d_k)
output = self.w_o(output)
return output
class FFTAttentionReducer(nn.Module):
def __init__(self, input_dim, output_dim, num_heads, seq_len_out):
super(FFTAttentionReducer, self).__init__()
self.positional_encoding = PositionalEncoding(d_model=64)
self.embed_dim = 64
self.heads = num_heads
self.head_dim = self.embed_dim // self.heads
assert (self.head_dim * self.heads == self.embed_dim), "Embed dim must be divisible by number of heads"
self.input_proj = nn.Linear(2, 64)
self.q = nn.Linear(self.embed_dim, self.embed_dim)
self.k = nn.Linear(self.embed_dim, self.embed_dim)
self.v = nn.Linear(self.embed_dim, self.embed_dim)
self.fc_out = nn.Linear(self.embed_dim, self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, output_dim)
self.pool = nn.AdaptiveAvgPool1d(seq_len_out)
self.norm1 = nn.LayerNorm(self.embed_dim)
def forward(self, x):
x = self.input_proj(x)
x = self.positional_encoding(x)
batch_size, seq_len, _ = x.shape
for _ in range(1):
residual = x
q = self.q(x).reshape(batch_size, seq_len, self.heads, self.head_dim).permute(0, 2, 1, 3)
k = self.k(x).reshape(batch_size, seq_len, self.heads, self.head_dim).permute(0, 2, 1, 3)
v = self.v(x).reshape(batch_size, seq_len, self.heads, self.head_dim).permute(0, 2, 1, 3)
attention_scores = torch.matmul(q, k.transpose(-2, -1)) / (self.embed_dim ** (1/2))
attention_scores = torch.softmax(attention_scores, dim=-1)
out = torch.matmul(attention_scores, v)
out = out.transpose(1, 2).contiguous().view(batch_size, seq_len, self.embed_dim)
x = self.norm1(out + residual)
out = self.fc_out(x)
out = self.fc1(out)
out = out.transpose(1, 2)
out = self.pool(out.contiguous())
out = out.transpose(1, 2)
return out
class PositionWiseFeedForward(nn.Module):
def __init__(self, d_model, d_ff):
super(PositionWiseFeedForward, self).__init__()
self.fc1 = nn.Linear(d_model, d_ff)
self.relu = nn.ReLU()
self.tanh = nn.Tanh()
self.fc2 = nn.Linear(d_ff, d_model)
self.leaky_relu = nn.LeakyReLU(negative_slope=0.01)
def forward(self, x):
return self.fc2(self.leaky_relu(self.fc1(x)))
class encoder(nn.Module):
def __init__(self, dim=2):
super(encoder, self).__init__()
self.input_proj = nn.Linear(2, 64)
self.dim = dim
self.attention_layer = nn.MultiheadAttention(embed_dim=64, num_heads=4, dropout=0.1)
self.norm1 = nn.LayerNorm(64)
self.norm2 = nn.LayerNorm(64)
self.dense1 = nn.Linear(40, 16)
self.dense2 = nn.Linear(16, 2)
self.softmax = nn.Softmax(dim=1)
self.model_eq = EQ_encoder()
self.positional_encoding = PositionalEncoding(d_model=64)
self.feed_forward = PositionWiseFeedForward(d_model=64, d_ff=20)
self.atten = AttentionBlock(d_model=64, num_heads=4, dropout=0.1)
self.relu = nn.ReLU()
self.tanh = nn.Tanh()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.input_proj(x)
x = self.positional_encoding(x)
for _ in range(1):
residual = x
x = self.atten(x, x, x)
x = self.norm1(x)
x = self.feed_forward(x)
x = self.norm2(x)
x = x + residual
return x
class encoder_LSTM(nn.Module):
def __init__(self):
super(encoder_LSTM, self).__init__()
self.lstm_layer = nn.LSTM(input_size=4, hidden_size=20, num_layers=5, batch_first=True)
self.dense1 = nn.Linear(100, 50)
self.dense2 = nn.Linear(50, 16)
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
output, (hidden_last, cell_last) = self.lstm_layer(x)
last_output = hidden_last[-1]
x = last_output.reshape(x.size(0), -1)
x = self.dense1(x)
x = torch.sigmoid(x)
x = self.dense2(x)
return x
class com_model(LightningModule):
def __init__(self):
super(com_model, self).__init__()
self.best_val_loss = float('inf')
self.best_val_acc = 0
self.train_loss_history = []
self.train_loss_accuracy = []
self.train_accuracy_history = []
self.val_loss_history = []
self.val_accuracy_history = []
self.model_eq = EQ_encoder()
self.encoder = encoder(dim=6)
self.flatten = nn.Flatten()
self.modelEQA = FFTAttentionReducer(input_dim=64, output_dim=64, num_heads=2, seq_len_out=10)
self.modelEQA2 = FFTAttentionReducer(input_dim=64, output_dim=64, num_heads=2, seq_len_out=10)
self.cross_attention_layer = nn.MultiheadAttention(embed_dim=64, num_heads=8)
self.encoder_LSTM = encoder_LSTM()
self.dense2 = nn.Linear(2*640, 100)
self.dense3 = nn.Linear(100, 30)
self.dense4 = nn.Linear(34, 2)
self.relu = nn.ReLU()
self.dropout = torch.nn.Dropout(0.4)
self.leaky_relu = nn.LeakyReLU(negative_slope=0.01)
self.softmax = nn.Softmax(dim=1)
def forward(self, x1, x2, x3):
int1_x = self.encoder(x1)
int2_x = self.modelEQA(x2)
concatenated_tensor = torch.cat((int1_x, int2_x), dim=2)
x = concatenated_tensor.view(-1, 2*640)
x = self.dense2(x)
x = self.dropout(x)
x = self.dense3(x)
x = self.leaky_relu(x)
x = torch.cat((x, x3), dim=1)
x = self.dense4(x)
x = self.leaky_relu(x)
out_y = self.softmax(x)
return out_y
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-4, weight_decay=1e-3)
return optimizer
def create_waterfall_plot(shap_values, n_features, output_index, X, model, base_values, raw_data, sample_name, lique_y, test_data, df_spt=None, df_soil_type=None):
"""Create a waterfall plot for SHAP values"""
model.eval()
with torch.no_grad():
x = test_data[X:X+1]
split_idx1 = 20
split_idx2 = split_idx1 + 10000
x1 = x[:, :split_idx1].view(-1, 2, 10).permute(0, 2, 1)
x2 = x[:, split_idx1:split_idx2].view(-1, 2, 5000).permute(0, 2, 1)
x3 = x[:, split_idx2:]
predictions = model(x1, x2, x3)
# Get the liquefaction probability (1 - no_liquefaction_prob)
model_prob = predictions[0, output_index].item()
base_value = base_values[output_index]
sample_shap = shap_values[X, :, output_index].copy() # Make a copy to avoid modifying original
# Scale SHAP values to match model prediction
shap_sum = sample_shap.sum()
target_sum = model_prob - base_value
if shap_sum != 0: # Avoid division by zero
scaling_factor = target_sum / shap_sum
sample_shap = sample_shap * scaling_factor
verification_results = {
'base_value': base_value,
'model_prediction': model_prob,
'shap_sum': sample_shap.sum(),
'final_probability': base_value + sample_shap.sum(),
'prediction_difference': abs(model_prob - (base_value + sample_shap.sum()))
}
# Process features
feature_names = []
feature_values = []
shap_values_list = []
# Process SPT and Soil features (first 20)
for idx in range(20):
if idx < 10:
name = f'SPT_{idx+1}'
val = df_spt.iloc[X, idx + 1] # +1 because first column is index/name
else:
name = f'Soil_{idx+1-10}'
val = df_soil_type.iloc[X, idx - 9] # -9 to get correct soil type column
feature_names.append(name)
feature_values.append(float(val))
shap_values_list.append(float(sample_shap[idx]))
# Add combined EQ feature
eq_sum = float(np.sum(sample_shap[20:5020]))
if abs(eq_sum) > 0:
feature_names.append('EQ')
feature_values.append(0) # EQ feature is already normalized
shap_values_list.append(eq_sum)
# Add combined Depth feature
depth_sum = float(np.sum(sample_shap[5020:10020]))
if abs(depth_sum) > 0:
feature_names.append('Depth')
feature_values.append(df_spt.iloc[X, 17])
shap_values_list.append(depth_sum)
# Add site features
feature_names.extend(['WT'])
feature_values.append(df_spt.iloc[X, 11])
shap_values_list.append(sample_shap[10020])
feature_names.extend(['Dist_epi'])
feature_values.append(df_spt.iloc[X, 12])
shap_values_list.append(sample_shap[10021])
feature_names.extend(['Dist_Water'])
feature_values.append(df_spt.iloc[X, 18])
shap_values_list.append(sample_shap[10022])
feature_names.extend(['Vs30'])
feature_values.append(df_spt.iloc[X, 19])
shap_values_list.append(sample_shap[10023])
# Convert to numpy arrays for consistent handling
abs_values = np.abs(shap_values_list)
actual_n_features = len(feature_names)
sorted_indices = np.argsort(abs_values)
top_indices = sorted_indices[-actual_n_features:].tolist()
# Create final arrays
final_names = []
final_values = []
final_shap = []
for i in reversed(top_indices):
if 0 <= i < len(feature_names):
final_names.append(feature_names[i])
final_values.append(feature_values[i])
final_shap.append(shap_values_list[i])
# Create SHAP explanation
explainer = shap.Explanation(
values=np.array(final_shap),
feature_names=final_names,
base_values=base_value,
data=np.array(final_values)
)
# Create plot
plt.clf()
plt.close('all')
fig = plt.figure(figsize=(12, 16))
shap.plots.waterfall(explainer, max_display=len(final_names), show=False)
plt.title(
f'Sample {X+1}, {sample_name[X][0]} ({lique_y[X][0]})',
fontsize=16,
pad=20,
fontweight='bold'
)
# Save plot
os.makedirs('Waterfall', exist_ok=True)
waterfall_path = f'Waterfall/Waterfall_Sample_{X+1}_class_{output_index}.png'
fig.savefig(waterfall_path, dpi=300, bbox_inches='tight')
plt.close()
return waterfall_path, verification_results
@st.cache_resource
def load_model():
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = com_model()
model.load_state_dict(torch.load('R4V6.3_Model.pth', map_location=device))
model = model.to(device)
model.eval()
return model
def preprocess_fft_eq(data):
"""Apply FFT preprocessing to earthquake data"""
# Ensure data is float32
data = data.astype(np.float32)
# Reshape to 2D if needed (samples, time_steps)
orig_shape = data.shape
if len(orig_shape) == 3:
data = data.reshape(orig_shape[0], orig_shape[1])
# Convert to torch tensor
data = torch.from_numpy(data).float()
# Apply FFT
fft_result = torch.fft.fft(data, dim=1)
# Get magnitude spectrum
magnitude = torch.abs(fft_result)
# Normalize
magnitude = magnitude / 150
# Convert back to numpy and reshape to original dimensions
magnitude = magnitude.numpy()
if len(orig_shape) == 3:
magnitude = magnitude.reshape(orig_shape)
return magnitude
def preprocess_data(df_spt, df_soil_type, df_EQ_data):
# Initialize scalers
scalers = load('fitted_scalers/all_scalers.joblib')
scaler1 = scalers['scaler1']
scaler2 = scalers['scaler2']
scaler3 = scalers['scaler3']
scaler6 = scalers['scaler6']
# Convert dataframes to numpy arrays
spt = np.array(df_spt)
soil_type = np.array(df_soil_type)
EQ_dta = np.array(df_EQ_data)
# Process SPT data
data_spt = scaler1.transform(spt[:, 1:11])
data_soil_type = soil_type[:, 1:11]/2 # normalize
# Process feature data
feature_n = spt[:, 11:13]
feature = scaler2.transform(feature_n)
# Process water and vs30 data
dis_water = spt[:, 18:19]
vs_30 = spt[:, 19:20]
dis_water = scaler3.transform(dis_water)
vs_30r = scaler6.transform(vs_30)
# Process EQ data
EQ_data = EQ_dta[:, 1:5001]
EQ_depth_S = spt[:, 17:18]/30
# Reshape EQ data
EQ_data = EQ_data.astype(np.float32)
EQ_data = np.reshape(EQ_data, (-1, EQ_data.shape[1], 1))
EQ_data_fft = preprocess_fft_eq(EQ_data)
# Create EQ feature
EQ_feature = np.zeros((EQ_data_fft.shape[0], EQ_data_fft.shape[1], 2))
EQ_feature[:,:,0:1] = EQ_data_fft
for i in range(0, (EQ_data.shape[0])):
EQ_feature[i,:,1] = EQ_depth_S[i,0]
# Create soil data
soil_data = np.stack([data_spt, data_soil_type], axis=2)
X_train_CNN = np.zeros((soil_data.shape[0], soil_data.shape[1], feature.shape[1]))
X_train_CNN[:,:,0:2] = soil_data
# Create feature_sta
feature_sta = np.concatenate((feature, dis_water, vs_30r), axis=1)
return X_train_CNN, EQ_feature, feature_sta
def main():
st.title("Liquefaction Probability Calculator V 1.0")
# Initialize session state
if 'processed' not in st.session_state:
st.session_state.processed = False
# Add example file download
with open('input.xlsx', 'rb') as file:
st.download_button(
label="Download Example Input File",
data=file,
file_name="example_input.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
# File upload
uploaded_file = st.file_uploader("Upload Excel file", type=['xlsx'])
if uploaded_file is not None:
try:
if not st.session_state.processed:
# Read the Excel file
df_spt = pd.read_excel(uploaded_file, sheet_name='SPT')
df_soil_type = pd.read_excel(uploaded_file, sheet_name='soil_type')
df_EQ_data = pd.read_excel(uploaded_file, sheet_name='EQ_data')
st.success("File uploaded successfully!")
# Add calculate button
if st.button("Calculate Liquefaction Probability"):
with st.spinner("Processing data and calculating probabilities..."):
# Preprocess data
X_train_CNN, EQ_feature, feature_sta = preprocess_data(df_spt, df_soil_type, df_EQ_data)
# Load model
model = load_model()
# Convert to tensors
X_train_CNN = torch.FloatTensor(X_train_CNN)
EQ_feature = torch.FloatTensor(EQ_feature)
feature_sta = torch.FloatTensor(feature_sta)
# Make prediction
with torch.no_grad():
predictions = model(X_train_CNN, EQ_feature, feature_sta)
# Display results
st.subheader("Prediction Results")
# Create a DataFrame for results
liquefaction_probs = [pred[1].item() for pred in predictions]
results_df = pd.DataFrame({
'Liquefaction Probability': liquefaction_probs
}, index=range(1, len(predictions) + 1))
results_df.index.name = 'Sample'
# Display results in a table
st.dataframe(
results_df.style.format({
'Liquefaction Probability': '{:.4f}'
}),
use_container_width=True
)
# Create and display SHAP waterfall plots
st.subheader("SHAP Analysis")
# Load pre-computed SHAP values
loaded_shap_values = np.load('V10.1_shap_values.npy')
for i in range(len(predictions)):
with st.expander(f"Sample {i+1}"):
# Create waterfall plot
waterfall_path, _ = create_waterfall_plot(
shap_values=loaded_shap_values,
n_features=25,
output_index=1,
X=i,
model=model,
base_values=[0.4510177, 0.5489824],
raw_data=torch.cat([
X_train_CNN.reshape(len(X_train_CNN), 10, 2).transpose(-1, 1).reshape(len(X_train_CNN), -1),
EQ_feature.reshape(len(EQ_feature), 5000, 2).transpose(-1, 1).reshape(len(EQ_feature), -1),
feature_sta
], dim=1),
sample_name=df_spt.iloc[:, :1].values,
lique_y=df_spt.iloc[:, 16:17].values,
test_data=torch.cat([
X_train_CNN.reshape(len(X_train_CNN), 10, 2).transpose(-1, 1).reshape(len(X_train_CNN), -1),
EQ_feature.reshape(len(EQ_feature), 5000, 2).transpose(-1, 1).reshape(len(EQ_feature), -1),
feature_sta
], dim=1),
df_spt=df_spt,
df_soil_type=df_soil_type
)
if os.path.exists(waterfall_path):
st.image(waterfall_path)
st.session_state.processed = True
except Exception as e:
st.error(f"An error occurred: {str(e)}")
else:
st.session_state.processed = False
if __name__ == "__main__":
main()