Spaces:
Running
Running
Fixed some errors
#2
by
MINGYISU
- opened
- app.py +19 -20
- results.csv +1 -1
- utils.py +66 -29
app.py
CHANGED
|
@@ -2,12 +2,11 @@ from utils import *
|
|
| 2 |
|
| 3 |
global data_component
|
| 4 |
|
| 5 |
-
def update_table(query, min_size, max_size,
|
| 6 |
df = get_df()
|
| 7 |
filtered_df = search_and_filter_models(df, query, min_size, max_size)
|
| 8 |
-
if
|
| 9 |
-
|
| 10 |
-
selected_columns = base_columns + selected_subjects
|
| 11 |
filtered_df = filtered_df[selected_columns]
|
| 12 |
return filtered_df
|
| 13 |
|
|
@@ -53,13 +52,13 @@ with gr.Blocks() as block:
|
|
| 53 |
label="Maximum number of parameters (B)",
|
| 54 |
)
|
| 55 |
|
| 56 |
-
|
| 57 |
with gr.Row():
|
| 58 |
-
|
| 59 |
-
choices=
|
| 60 |
-
value=
|
| 61 |
-
label="Select
|
| 62 |
-
elem_id="
|
| 63 |
)
|
| 64 |
|
| 65 |
data_component = gr.components.Dataframe(
|
|
@@ -73,27 +72,27 @@ with gr.Blocks() as block:
|
|
| 73 |
|
| 74 |
refresh_button = gr.Button("Refresh")
|
| 75 |
|
| 76 |
-
def
|
| 77 |
return update_table(*args)
|
| 78 |
|
| 79 |
search_bar.change(
|
| 80 |
-
fn=
|
| 81 |
-
inputs=[search_bar, min_size_slider, max_size_slider,
|
| 82 |
outputs=data_component
|
| 83 |
)
|
| 84 |
min_size_slider.change(
|
| 85 |
-
fn=
|
| 86 |
-
inputs=[search_bar, min_size_slider, max_size_slider,
|
| 87 |
outputs=data_component
|
| 88 |
)
|
| 89 |
max_size_slider.change(
|
| 90 |
-
fn=
|
| 91 |
-
inputs=[search_bar, min_size_slider, max_size_slider,
|
| 92 |
outputs=data_component
|
| 93 |
)
|
| 94 |
-
|
| 95 |
-
fn=
|
| 96 |
-
inputs=[search_bar, min_size_slider, max_size_slider,
|
| 97 |
outputs=data_component
|
| 98 |
)
|
| 99 |
refresh_button.click(fn=refresh_data, outputs=data_component)
|
|
|
|
| 2 |
|
| 3 |
global data_component
|
| 4 |
|
| 5 |
+
def update_table(query, min_size, max_size, selected_tasks=None):
|
| 6 |
df = get_df()
|
| 7 |
filtered_df = search_and_filter_models(df, query, min_size, max_size)
|
| 8 |
+
if selected_tasks and len(selected_tasks) > 0:
|
| 9 |
+
selected_columns = BASE_COLS + selected_tasks
|
|
|
|
| 10 |
filtered_df = filtered_df[selected_columns]
|
| 11 |
return filtered_df
|
| 12 |
|
|
|
|
| 52 |
label="Maximum number of parameters (B)",
|
| 53 |
)
|
| 54 |
|
| 55 |
+
task_choices = [col for col in COLUMN_NAMES if col not in BASE_COLS]
|
| 56 |
with gr.Row():
|
| 57 |
+
tasks_select = gr.CheckboxGroup(
|
| 58 |
+
choices=task_choices,
|
| 59 |
+
value=task_choices,
|
| 60 |
+
label="Select tasks to Display",
|
| 61 |
+
elem_id="tasks-select"
|
| 62 |
)
|
| 63 |
|
| 64 |
data_component = gr.components.Dataframe(
|
|
|
|
| 72 |
|
| 73 |
refresh_button = gr.Button("Refresh")
|
| 74 |
|
| 75 |
+
def update_with_tasks(*args):
|
| 76 |
return update_table(*args)
|
| 77 |
|
| 78 |
search_bar.change(
|
| 79 |
+
fn=update_with_tasks,
|
| 80 |
+
inputs=[search_bar, min_size_slider, max_size_slider, tasks_select],
|
| 81 |
outputs=data_component
|
| 82 |
)
|
| 83 |
min_size_slider.change(
|
| 84 |
+
fn=update_with_tasks,
|
| 85 |
+
inputs=[search_bar, min_size_slider, max_size_slider, tasks_select],
|
| 86 |
outputs=data_component
|
| 87 |
)
|
| 88 |
max_size_slider.change(
|
| 89 |
+
fn=update_with_tasks,
|
| 90 |
+
inputs=[search_bar, min_size_slider, max_size_slider, tasks_select],
|
| 91 |
outputs=data_component
|
| 92 |
)
|
| 93 |
+
tasks_select.change(
|
| 94 |
+
fn=update_with_tasks,
|
| 95 |
+
inputs=[search_bar, min_size_slider, max_size_slider, tasks_select],
|
| 96 |
outputs=data_component
|
| 97 |
)
|
| 98 |
refresh_button.click(fn=refresh_data, outputs=data_component)
|
results.csv
CHANGED
|
@@ -12,4 +12,4 @@ OpenCLIP-FFT,unk,unk,47.2,50.5,43.1,56.0,21.9,55.4,64.1
|
|
| 12 |
VLM2Vec (Phi-3.5-V-FFT),unk,TIGER-Lab,55.9,62.8,47.4,52.8,50.3,57.8,72.3
|
| 13 |
VLM2Vec (Phi-3.5-V-LoRA),unk,TIGER-Lab,60.1,66.5,52.0,54.8,54.9,62.3,79.5
|
| 14 |
VLM2Vec (LLaVA-1.6-LoRA-LowRes),unk,TIGER-Lab,55.0,61.0,47.5,54.7,50.3,56.2,64.0
|
| 15 |
-
VLM2Vec (LLaVA-1.6-LoRA-HighRes),unk,TIGER-Lab,62.9,67.5,57.1,61.2,49.9,67.4,86.1
|
|
|
|
| 12 |
VLM2Vec (Phi-3.5-V-FFT),unk,TIGER-Lab,55.9,62.8,47.4,52.8,50.3,57.8,72.3
|
| 13 |
VLM2Vec (Phi-3.5-V-LoRA),unk,TIGER-Lab,60.1,66.5,52.0,54.8,54.9,62.3,79.5
|
| 14 |
VLM2Vec (LLaVA-1.6-LoRA-LowRes),unk,TIGER-Lab,55.0,61.0,47.5,54.7,50.3,56.2,64.0
|
| 15 |
+
VLM2Vec (LLaVA-1.6-LoRA-HighRes),unk,TIGER-Lab,62.9,67.5,57.1,61.2,49.9,67.4,86.1
|
utils.py
CHANGED
|
@@ -3,12 +3,14 @@ import gradio as gr
|
|
| 3 |
import csv
|
| 4 |
import json
|
| 5 |
import os
|
|
|
|
|
|
|
| 6 |
import shutil
|
| 7 |
from huggingface_hub import Repository
|
| 8 |
|
| 9 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 10 |
|
| 11 |
-
|
| 12 |
|
| 13 |
MODEL_INFO = [
|
| 14 |
"Models", "Model Size(B)", "Data Source",
|
|
@@ -16,27 +18,54 @@ MODEL_INFO = [
|
|
| 16 |
"Classification", "VQA", "Retrieval", "Grounding"
|
| 17 |
]
|
| 18 |
|
|
|
|
|
|
|
| 19 |
DATA_TITLE_TYPE = ['markdown', 'str', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number']
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
CSV_DIR = "results.csv"
|
| 25 |
|
| 26 |
COLUMN_NAMES = MODEL_INFO
|
| 27 |
|
| 28 |
-
LEADERBOARD_INTRODUCTION = """
|
|
|
|
| 29 |
|
| 30 |
## Introduction
|
| 31 |
-
We introduce
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
"""
|
| 35 |
|
| 36 |
TABLE_INTRODUCTION = """"""
|
| 37 |
|
| 38 |
LEADERBOARD_INFO = """
|
| 39 |
## Dataset Summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
"""
|
| 41 |
|
| 42 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
|
@@ -63,46 +92,52 @@ SUBMIT_INTRODUCTION = """# Submit on MMEB Leaderboard Introduction
|
|
| 63 |
"""
|
| 64 |
|
| 65 |
def get_df():
|
| 66 |
-
#
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
df['Model Size(B)'] = df['Model Size(B)'].apply(process_model_size)
|
| 71 |
df = df.sort_values(by=['Overall'], ascending=False)
|
| 72 |
return df
|
| 73 |
|
| 74 |
|
| 75 |
-
def add_new_eval(
|
| 76 |
-
input_file,
|
| 77 |
-
):
|
| 78 |
if input_file is None:
|
| 79 |
return "Error! Empty file!"
|
| 80 |
|
|
|
|
| 81 |
upload_data = json.loads(input_file)
|
| 82 |
print("upload_data:\n", upload_data)
|
| 83 |
-
data_row = [f'{upload_data["Model"]}'
|
| 84 |
-
for
|
| 85 |
-
|
|
|
|
|
|
|
| 86 |
print("data_row:\n", data_row)
|
| 87 |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL,
|
| 88 |
-
use_auth_token=HF_TOKEN, repo_type="
|
| 89 |
submission_repo.git_pull()
|
| 90 |
|
|
|
|
| 91 |
already_submitted = []
|
| 92 |
with open(CSV_DIR, mode='r') as file:
|
| 93 |
reader = csv.reader(file, delimiter=',')
|
| 94 |
for row in reader:
|
| 95 |
already_submitted.append(row[0])
|
| 96 |
-
|
| 97 |
if data_row[0] not in already_submitted:
|
| 98 |
with open(CSV_DIR, mode='a', newline='') as file:
|
| 99 |
writer = csv.writer(file)
|
| 100 |
writer.writerow(data_row)
|
| 101 |
-
|
| 102 |
submission_repo.push_to_hub()
|
| 103 |
print('Submission Successful')
|
| 104 |
else:
|
| 105 |
-
print('The
|
| 106 |
|
| 107 |
def refresh_data():
|
| 108 |
df = get_df()
|
|
@@ -154,7 +189,9 @@ def search_models(df, query):
|
|
| 154 |
|
| 155 |
|
| 156 |
def get_size_range(df):
|
| 157 |
-
sizes = df['Model Size(B)'].apply(lambda x:
|
|
|
|
|
|
|
| 158 |
return float(sizes.min()), float(sizes.max())
|
| 159 |
|
| 160 |
|
|
@@ -168,16 +205,16 @@ def process_model_size(size):
|
|
| 168 |
return 'unknown'
|
| 169 |
|
| 170 |
|
| 171 |
-
def
|
| 172 |
-
if
|
| 173 |
return df[COLUMN_NAMES]
|
| 174 |
|
| 175 |
base_columns = ['Models', 'Model Size(B)', 'Data Source', 'Overall']
|
| 176 |
-
selected_columns = base_columns +
|
| 177 |
|
| 178 |
available_columns = [col for col in selected_columns if col in df.columns]
|
| 179 |
return df[available_columns]
|
| 180 |
|
| 181 |
-
def
|
| 182 |
-
return
|
| 183 |
|
|
|
|
| 3 |
import csv
|
| 4 |
import json
|
| 5 |
import os
|
| 6 |
+
import requests
|
| 7 |
+
import io
|
| 8 |
import shutil
|
| 9 |
from huggingface_hub import Repository
|
| 10 |
|
| 11 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 12 |
|
| 13 |
+
TASKS = ["Classification", "VQA", "Retrieval", "Grounding"]
|
| 14 |
|
| 15 |
MODEL_INFO = [
|
| 16 |
"Models", "Model Size(B)", "Data Source",
|
|
|
|
| 18 |
"Classification", "VQA", "Retrieval", "Grounding"
|
| 19 |
]
|
| 20 |
|
| 21 |
+
BASE_COLS = [col for col in MODEL_INFO if col not in TASKS]
|
| 22 |
+
|
| 23 |
DATA_TITLE_TYPE = ['markdown', 'str', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number']
|
| 24 |
|
| 25 |
+
SUBMISSION_NAME = "MMEB"
|
| 26 |
+
SUBMISSION_URL = os.path.join("https://huggingface.co/spaces/TIGER-Lab/", SUBMISSION_NAME)
|
| 27 |
+
FILE_NAME = "results.csv"
|
| 28 |
+
CSV_DIR = "./results.csv"
|
| 29 |
|
| 30 |
COLUMN_NAMES = MODEL_INFO
|
| 31 |
|
| 32 |
+
LEADERBOARD_INTRODUCTION = """
|
| 33 |
+
# MMEB Leaderboard
|
| 34 |
|
| 35 |
## Introduction
|
| 36 |
+
We introduce a novel benchmark, MMEB (Massive Multimodal Embedding Benchmark),
|
| 37 |
+
which includes 36 datasets spanning four meta-task categories: classification, visual question answering, retrieval, and visual grounding. MMEB provides a comprehensive framework for training
|
| 38 |
+
and evaluating embedding models across various combinations of text and image modalities.
|
| 39 |
+
All tasks are reformulated as ranking tasks, where the model follows instructions, processes a query, and selects the correct target from a set of candidates. The query and target can be an image, text,
|
| 40 |
+
or a combination of both. MMEB is divided into 20 in-distribution datasets, which can be used for
|
| 41 |
+
training, and 16 out-of-distribution datasets, reserved for evaluation.
|
| 42 |
+
|
| 43 |
+
The detailed explanation of the benchmark and datasets can be found in our paper: https://doi.org/10.48550/arXiv.2410.05160.
|
| 44 |
"""
|
| 45 |
|
| 46 |
TABLE_INTRODUCTION = """"""
|
| 47 |
|
| 48 |
LEADERBOARD_INFO = """
|
| 49 |
## Dataset Summary
|
| 50 |
+
MMEB is organized into four primary meta-task categories:
|
| 51 |
+
- **Classification**: This category comprises 5 in-distribution and 5 out-of-distribution datasets. Queries
|
| 52 |
+
consist of instructions and images, optionally accompanied by related text. Targets are class labels,
|
| 53 |
+
and the number of class labels corresponds to the number of classes in the dataset. \n
|
| 54 |
+
- IND: ImageNet-1k, N24News, HatefulMemes, VOC2007, SUN397 \n
|
| 55 |
+
- OOD: Place365, ImageNet-A, ImageNet-R, ObjectNet, Country-211 \n
|
| 56 |
+
- **Visual Question Answering**: This category includes 6 in-distribution and 4 out-of-distribution
|
| 57 |
+
datasets. The query consists of an instruction, an image, and a piece of text as the question, while
|
| 58 |
+
the target is the answer. Each query has 1,000 target candidates: 1 ground truth and 999 distractors. \n
|
| 59 |
+
- IND: OK-VQA, A-OKVQA, DocVQA, InfographicVQA, ChartQA, Visual7W \n
|
| 60 |
+
- OOD: ScienceQA, VizWiz, GQA, TextVQA \n
|
| 61 |
+
- **Information Retrieval**: This category contains 8 in-distribution and 4 out-of-distribution datasets.
|
| 62 |
+
Both the query and target sides can involve a combination of text, images, and instructions. Similar
|
| 63 |
+
to the VQA task, each query has 1,000 candidates, with 1 ground truth and 999 distractors. \n
|
| 64 |
+
- IND: VisDial, CIRR, VisualNews_t2i, VisualNews_i2t, MSCOCO_t2i, MSCOCO_i2t, NIGHTS, WebQA \n
|
| 65 |
+
- OOD: OVEN, FashionIQ, EDIS, Wiki-SS-NQ \n
|
| 66 |
+
- **Visual Grounding**: This category includes 1 in-distribution and 3 out-of-distribution datasets, which are adapted from object detection tasks. Queries consist of an instruction, an image, and text referring to a specific region or object within the image. The target may include a cropped image of the object or text describing the same region. Each query includes 1,000 candidates: 1 ground truth and 999 distractors. These distractors may include hard negatives from the same object class, other objects in the image, or random objects from different images. \n
|
| 67 |
+
- IND: MSCOCO \n
|
| 68 |
+
- OOD: Visual7W-Pointing, RefCOCO, RefCOCO-Matching \n
|
| 69 |
"""
|
| 70 |
|
| 71 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
|
|
|
| 92 |
"""
|
| 93 |
|
| 94 |
def get_df():
|
| 95 |
+
# fetch the leaderboard data
|
| 96 |
+
url = "https://huggingface.co/spaces/TIGER-Lab/MMEB/resolve/main/results.csv"
|
| 97 |
+
response = requests.get(url, headers={"Authorization": f"Bearer {HF_TOKEN}"})
|
| 98 |
+
if response.status_code != 200:
|
| 99 |
+
import sys
|
| 100 |
+
sys.exit(f"Error: {response.status_code}")
|
| 101 |
+
df = pd.read_csv(io.StringIO(response.text))
|
| 102 |
+
df.to_csv(CSV_DIR, index=False) # update local file
|
| 103 |
df['Model Size(B)'] = df['Model Size(B)'].apply(process_model_size)
|
| 104 |
df = df.sort_values(by=['Overall'], ascending=False)
|
| 105 |
return df
|
| 106 |
|
| 107 |
|
| 108 |
+
def add_new_eval(input_file):
|
|
|
|
|
|
|
| 109 |
if input_file is None:
|
| 110 |
return "Error! Empty file!"
|
| 111 |
|
| 112 |
+
# Load the input json file
|
| 113 |
upload_data = json.loads(input_file)
|
| 114 |
print("upload_data:\n", upload_data)
|
| 115 |
+
data_row = [f'{upload_data["Model"]}']
|
| 116 |
+
for col in ['Overall', 'Model Size(B)', 'IND', 'OOD'] + TASKS:
|
| 117 |
+
if not col in upload_data.keys():
|
| 118 |
+
return f"Error! Missing {col} column!"
|
| 119 |
+
data_row += [upload_data[col]]
|
| 120 |
print("data_row:\n", data_row)
|
| 121 |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL,
|
| 122 |
+
use_auth_token=HF_TOKEN, repo_type="space")
|
| 123 |
submission_repo.git_pull()
|
| 124 |
|
| 125 |
+
# Track submitted models
|
| 126 |
already_submitted = []
|
| 127 |
with open(CSV_DIR, mode='r') as file:
|
| 128 |
reader = csv.reader(file, delimiter=',')
|
| 129 |
for row in reader:
|
| 130 |
already_submitted.append(row[0])
|
| 131 |
+
# if not in the existing models list, add it to the csv file
|
| 132 |
if data_row[0] not in already_submitted:
|
| 133 |
with open(CSV_DIR, mode='a', newline='') as file:
|
| 134 |
writer = csv.writer(file)
|
| 135 |
writer.writerow(data_row)
|
| 136 |
+
|
| 137 |
submission_repo.push_to_hub()
|
| 138 |
print('Submission Successful')
|
| 139 |
else:
|
| 140 |
+
print('The model already exists in the leaderboard!')
|
| 141 |
|
| 142 |
def refresh_data():
|
| 143 |
df = get_df()
|
|
|
|
| 189 |
|
| 190 |
|
| 191 |
def get_size_range(df):
|
| 192 |
+
sizes = df['Model Size(B)'].apply(lambda x: 0.0 if x == 'unknown' else x)
|
| 193 |
+
if (sizes == 0.0).all():
|
| 194 |
+
return 0.0, 1000.0
|
| 195 |
return float(sizes.min()), float(sizes.max())
|
| 196 |
|
| 197 |
|
|
|
|
| 205 |
return 'unknown'
|
| 206 |
|
| 207 |
|
| 208 |
+
def filter_columns_by_tasks(df, selected_tasks=None):
|
| 209 |
+
if selected_tasks is None or len(selected_tasks) == 0:
|
| 210 |
return df[COLUMN_NAMES]
|
| 211 |
|
| 212 |
base_columns = ['Models', 'Model Size(B)', 'Data Source', 'Overall']
|
| 213 |
+
selected_columns = base_columns + selected_tasks
|
| 214 |
|
| 215 |
available_columns = [col for col in selected_columns if col in df.columns]
|
| 216 |
return df[available_columns]
|
| 217 |
|
| 218 |
+
def get_task_choices():
|
| 219 |
+
return TASKS
|
| 220 |
|