Spaces:
Configuration error
Configuration error
| import argparse | |
| import os | |
| import os.path as osp | |
| import torchvision.transforms.functional as TF | |
| import torch.nn.functional as F | |
| import cv2 | |
| import tempfile | |
| import imageio | |
| import torch | |
| import decord | |
| from PIL import Image | |
| import numpy as np | |
| from rembg import remove, new_session | |
| import random | |
| import ffmpeg | |
| import os | |
| import tempfile | |
| import subprocess | |
| import json | |
| from functools import lru_cache | |
| os.environ["U2NET_HOME"] = os.path.join(os.getcwd(), "ckpts", "rembg") | |
| from PIL import Image | |
| video_info_cache = [] | |
| def seed_everything(seed: int): | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| if torch.cuda.is_available(): | |
| torch.cuda.manual_seed(seed) | |
| if torch.backends.mps.is_available(): | |
| torch.mps.manual_seed(seed) | |
| def has_video_file_extension(filename): | |
| extension = os.path.splitext(filename)[-1].lower() | |
| return extension in [".mp4"] | |
| def has_image_file_extension(filename): | |
| extension = os.path.splitext(filename)[-1].lower() | |
| return extension in [".png", ".jpg", ".jpeg", ".bmp", ".gif", ".webp", ".tif", ".tiff", ".jfif", ".pjpeg"] | |
| def resample(video_fps, video_frames_count, max_target_frames_count, target_fps, start_target_frame ): | |
| import math | |
| video_frame_duration = 1 /video_fps | |
| target_frame_duration = 1 / target_fps | |
| target_time = start_target_frame * target_frame_duration | |
| frame_no = math.ceil(target_time / video_frame_duration) | |
| cur_time = frame_no * video_frame_duration | |
| frame_ids =[] | |
| while True: | |
| if max_target_frames_count != 0 and len(frame_ids) >= max_target_frames_count : | |
| break | |
| diff = round( (target_time -cur_time) / video_frame_duration , 5) | |
| add_frames_count = math.ceil( diff) | |
| frame_no += add_frames_count | |
| if frame_no >= video_frames_count: | |
| break | |
| frame_ids.append(frame_no) | |
| cur_time += add_frames_count * video_frame_duration | |
| target_time += target_frame_duration | |
| frame_ids = frame_ids[:max_target_frames_count] | |
| return frame_ids | |
| import os | |
| from datetime import datetime | |
| def get_file_creation_date(file_path): | |
| # On Windows | |
| if os.name == 'nt': | |
| return datetime.fromtimestamp(os.path.getctime(file_path)) | |
| # On Unix/Linux/Mac (gets last status change, not creation) | |
| else: | |
| stat = os.stat(file_path) | |
| return datetime.fromtimestamp(stat.st_birthtime if hasattr(stat, 'st_birthtime') else stat.st_mtime) | |
| def truncate_for_filesystem(s, max_bytes=255): | |
| if len(s.encode('utf-8')) <= max_bytes: return s | |
| l, r = 0, len(s) | |
| while l < r: | |
| m = (l + r + 1) // 2 | |
| if len(s[:m].encode('utf-8')) <= max_bytes: l = m | |
| else: r = m - 1 | |
| return s[:l] | |
| def get_video_info(video_path): | |
| global video_info_cache | |
| import cv2 | |
| cap = cv2.VideoCapture(video_path) | |
| # Get FPS | |
| fps = round(cap.get(cv2.CAP_PROP_FPS)) | |
| # Get resolution | |
| width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
| height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| cap.release() | |
| return fps, width, height, frame_count | |
| def get_video_frame(file_name: str, frame_no: int, return_last_if_missing: bool = False, target_fps = None, return_PIL = True) -> torch.Tensor: | |
| """Extract nth frame from video as PyTorch tensor normalized to [-1, 1].""" | |
| cap = cv2.VideoCapture(file_name) | |
| if not cap.isOpened(): | |
| raise ValueError(f"Cannot open video: {file_name}") | |
| total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| fps = round(cap.get(cv2.CAP_PROP_FPS)) | |
| if target_fps is not None: | |
| frame_no = round(target_fps * frame_no /fps) | |
| # Handle out of bounds | |
| if frame_no >= total_frames or frame_no < 0: | |
| if return_last_if_missing: | |
| frame_no = total_frames - 1 | |
| else: | |
| cap.release() | |
| raise IndexError(f"Frame {frame_no} out of bounds (0-{total_frames-1})") | |
| # Get frame | |
| cap.set(cv2.CAP_PROP_POS_FRAMES, frame_no) | |
| ret, frame = cap.read() | |
| cap.release() | |
| if not ret: | |
| raise ValueError(f"Failed to read frame {frame_no}") | |
| # Convert BGR->RGB, reshape to (C,H,W), normalize to [-1,1] | |
| frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| if return_PIL: | |
| return Image.fromarray(frame) | |
| else: | |
| return (torch.from_numpy(frame).permute(2, 0, 1).float() / 127.5) - 1.0 | |
| # def get_video_frame(file_name, frame_no): | |
| # decord.bridge.set_bridge('torch') | |
| # reader = decord.VideoReader(file_name) | |
| # frame = reader.get_batch([frame_no]).squeeze(0) | |
| # img = Image.fromarray(frame.numpy().astype(np.uint8)) | |
| # return img | |
| def convert_image_to_video(image): | |
| if image is None: | |
| return None | |
| # Convert PIL/numpy image to OpenCV format if needed | |
| if isinstance(image, np.ndarray): | |
| # Gradio images are typically RGB, OpenCV expects BGR | |
| img_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
| else: | |
| # Handle PIL Image | |
| img_array = np.array(image) | |
| img_bgr = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR) | |
| height, width = img_bgr.shape[:2] | |
| # Create temporary video file (auto-cleaned by Gradio) | |
| with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video: | |
| fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
| out = cv2.VideoWriter(temp_video.name, fourcc, 30.0, (width, height)) | |
| out.write(img_bgr) | |
| out.release() | |
| return temp_video.name | |
| def resize_lanczos(img, h, w): | |
| img = (img + 1).float().mul_(127.5) | |
| img = Image.fromarray(np.clip(img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) | |
| img = img.resize((w,h), resample=Image.Resampling.LANCZOS) | |
| img = torch.from_numpy(np.array(img).astype(np.float32)).movedim(-1, 0) | |
| img = img.div(127.5).sub_(1) | |
| return img | |
| def remove_background(img, session=None): | |
| if session ==None: | |
| session = new_session() | |
| img = Image.fromarray(np.clip(255. * img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) | |
| img = remove(img, session=session, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB') | |
| return torch.from_numpy(np.array(img).astype(np.float32) / 255.0).movedim(-1, 0) | |
| def convert_image_to_tensor(image): | |
| return torch.from_numpy(np.array(image).astype(np.float32)).div_(127.5).sub_(1.).movedim(-1, 0) | |
| def convert_tensor_to_image(t, frame_no = 0, mask_levels = False): | |
| if len(t.shape) == 4: | |
| t = t[:, frame_no] | |
| if t.shape[0]== 1: | |
| t = t.expand(3,-1,-1) | |
| if mask_levels: | |
| return Image.fromarray(t.clone().mul_(255).permute(1,2,0).to(torch.uint8).cpu().numpy()) | |
| else: | |
| return Image.fromarray(t.clone().add_(1.).mul_(127.5).permute(1,2,0).to(torch.uint8).cpu().numpy()) | |
| def save_image(tensor_image, name, frame_no = -1): | |
| convert_tensor_to_image(tensor_image, frame_no).save(name) | |
| def get_outpainting_full_area_dimensions(frame_height,frame_width, outpainting_dims): | |
| outpainting_top, outpainting_bottom, outpainting_left, outpainting_right= outpainting_dims | |
| frame_height = int(frame_height * (100 + outpainting_top + outpainting_bottom) / 100) | |
| frame_width = int(frame_width * (100 + outpainting_left + outpainting_right) / 100) | |
| return frame_height, frame_width | |
| def rgb_bw_to_rgba_mask(img, thresh=127): | |
| a = img.convert('L').point(lambda p: 255 if p > thresh else 0) # alpha | |
| out = Image.new('RGBA', img.size, (255, 255, 255, 0)) # white, transparent | |
| out.putalpha(a) # white where alpha=255 | |
| return out | |
| def get_outpainting_frame_location(final_height, final_width, outpainting_dims, block_size = 8): | |
| outpainting_top, outpainting_bottom, outpainting_left, outpainting_right= outpainting_dims | |
| raw_height = int(final_height / ((100 + outpainting_top + outpainting_bottom) / 100)) | |
| height = int(raw_height / block_size) * block_size | |
| extra_height = raw_height - height | |
| raw_width = int(final_width / ((100 + outpainting_left + outpainting_right) / 100)) | |
| width = int(raw_width / block_size) * block_size | |
| extra_width = raw_width - width | |
| margin_top = int(outpainting_top/(100 + outpainting_top + outpainting_bottom) * final_height) | |
| if extra_height != 0 and (outpainting_top + outpainting_bottom) != 0: | |
| margin_top += int(outpainting_top / (outpainting_top + outpainting_bottom) * extra_height) | |
| if (margin_top + height) > final_height or outpainting_bottom == 0: margin_top = final_height - height | |
| margin_left = int(outpainting_left/(100 + outpainting_left + outpainting_right) * final_width) | |
| if extra_width != 0 and (outpainting_left + outpainting_right) != 0: | |
| margin_left += int(outpainting_left / (outpainting_left + outpainting_right) * extra_height) | |
| if (margin_left + width) > final_width or outpainting_right == 0: margin_left = final_width - width | |
| return height, width, margin_top, margin_left | |
| def rescale_and_crop(img, w, h): | |
| ow, oh = img.size | |
| target_ratio = w / h | |
| orig_ratio = ow / oh | |
| if orig_ratio > target_ratio: | |
| # Crop width first | |
| nw = int(oh * target_ratio) | |
| img = img.crop(((ow - nw) // 2, 0, (ow + nw) // 2, oh)) | |
| else: | |
| # Crop height first | |
| nh = int(ow / target_ratio) | |
| img = img.crop((0, (oh - nh) // 2, ow, (oh + nh) // 2)) | |
| return img.resize((w, h), Image.LANCZOS) | |
| def calculate_new_dimensions(canvas_height, canvas_width, image_height, image_width, fit_into_canvas, block_size = 16): | |
| if fit_into_canvas == None or fit_into_canvas == 2: | |
| # return image_height, image_width | |
| return canvas_height, canvas_width | |
| if fit_into_canvas == 1: | |
| scale1 = min(canvas_height / image_height, canvas_width / image_width) | |
| scale2 = min(canvas_width / image_height, canvas_height / image_width) | |
| scale = max(scale1, scale2) | |
| else: #0 or #2 (crop) | |
| scale = (canvas_height * canvas_width / (image_height * image_width))**(1/2) | |
| new_height = round( image_height * scale / block_size) * block_size | |
| new_width = round( image_width * scale / block_size) * block_size | |
| return new_height, new_width | |
| def calculate_dimensions_and_resize_image(image, canvas_height, canvas_width, fit_into_canvas, fit_crop, block_size = 16): | |
| if fit_crop: | |
| image = rescale_and_crop(image, canvas_width, canvas_height) | |
| new_width, new_height = image.size | |
| else: | |
| image_width, image_height = image.size | |
| new_height, new_width = calculate_new_dimensions(canvas_height, canvas_width, image_height, image_width, fit_into_canvas, block_size = block_size ) | |
| image = image.resize((new_width, new_height), resample=Image.Resampling.LANCZOS) | |
| return image, new_height, new_width | |
| def resize_and_remove_background(img_list, budget_width, budget_height, rm_background, any_background_ref, fit_into_canvas = 0, block_size= 16, outpainting_dims = None, background_ref_outpainted = True, inpaint_color = 127.5, return_tensor = False, ignore_last_refs = 0 ): | |
| if rm_background: | |
| session = new_session() | |
| output_list =[] | |
| output_mask_list =[] | |
| for i, img in enumerate(img_list if ignore_last_refs == 0 else img_list[:-ignore_last_refs]): | |
| width, height = img.size | |
| resized_mask = None | |
| if any_background_ref == 1 and i==0 or any_background_ref == 2: | |
| if outpainting_dims is not None and background_ref_outpainted: | |
| resized_image, resized_mask = fit_image_into_canvas(img, (budget_height, budget_width), inpaint_color, full_frame = True, outpainting_dims = outpainting_dims, return_mask= True, return_image= True) | |
| elif img.size != (budget_width, budget_height): | |
| resized_image= img.resize((budget_width, budget_height), resample=Image.Resampling.LANCZOS) | |
| else: | |
| resized_image =img | |
| elif fit_into_canvas == 1: | |
| white_canvas = np.ones((budget_height, budget_width, 3), dtype=np.uint8) * 255 | |
| scale = min(budget_height / height, budget_width / width) | |
| new_height = int(height * scale) | |
| new_width = int(width * scale) | |
| resized_image= img.resize((new_width,new_height), resample=Image.Resampling.LANCZOS) | |
| top = (budget_height - new_height) // 2 | |
| left = (budget_width - new_width) // 2 | |
| white_canvas[top:top + new_height, left:left + new_width] = np.array(resized_image) | |
| resized_image = Image.fromarray(white_canvas) | |
| else: | |
| scale = (budget_height * budget_width / (height * width))**(1/2) | |
| new_height = int( round(height * scale / block_size) * block_size) | |
| new_width = int( round(width * scale / block_size) * block_size) | |
| resized_image= img.resize((new_width,new_height), resample=Image.Resampling.LANCZOS) | |
| if rm_background and not (any_background_ref and i==0 or any_background_ref == 2) : | |
| # resized_image = remove(resized_image, session=session, alpha_matting_erode_size = 1,alpha_matting_background_threshold = 70, alpha_foreground_background_threshold = 100, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB') | |
| resized_image = remove(resized_image, session=session, alpha_matting_erode_size = 1, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB') | |
| if return_tensor: | |
| output_list.append(convert_image_to_tensor(resized_image).unsqueeze(1)) | |
| else: | |
| output_list.append(resized_image) | |
| output_mask_list.append(resized_mask) | |
| if ignore_last_refs: | |
| for img in img_list[-ignore_last_refs:]: | |
| output_list.append(convert_image_to_tensor(img).unsqueeze(1) if return_tensor else img) | |
| output_mask_list.append(None) | |
| return output_list, output_mask_list | |
| def fit_image_into_canvas(ref_img, image_size, canvas_tf_bg =127.5, device ="cpu", full_frame = False, outpainting_dims = None, return_mask = False, return_image = False): | |
| from shared.utils.utils import save_image | |
| inpaint_color = canvas_tf_bg / 127.5 - 1 | |
| ref_width, ref_height = ref_img.size | |
| if (ref_height, ref_width) == image_size and outpainting_dims == None: | |
| ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1) | |
| canvas = torch.zeros_like(ref_img[:1]) if return_mask else None | |
| else: | |
| if outpainting_dims != None: | |
| final_height, final_width = image_size | |
| canvas_height, canvas_width, margin_top, margin_left = get_outpainting_frame_location(final_height, final_width, outpainting_dims, 1) | |
| else: | |
| canvas_height, canvas_width = image_size | |
| if full_frame: | |
| new_height = canvas_height | |
| new_width = canvas_width | |
| top = left = 0 | |
| else: | |
| # if fill_max and (canvas_height - new_height) < 16: | |
| # new_height = canvas_height | |
| # if fill_max and (canvas_width - new_width) < 16: | |
| # new_width = canvas_width | |
| scale = min(canvas_height / ref_height, canvas_width / ref_width) | |
| new_height = int(ref_height * scale) | |
| new_width = int(ref_width * scale) | |
| top = (canvas_height - new_height) // 2 | |
| left = (canvas_width - new_width) // 2 | |
| ref_img = ref_img.resize((new_width, new_height), resample=Image.Resampling.LANCZOS) | |
| ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1) | |
| if outpainting_dims != None: | |
| canvas = torch.full((3, 1, final_height, final_width), inpaint_color, dtype= torch.float, device=device) # [-1, 1] | |
| canvas[:, :, margin_top + top:margin_top + top + new_height, margin_left + left:margin_left + left + new_width] = ref_img | |
| else: | |
| canvas = torch.full((3, 1, canvas_height, canvas_width), inpaint_color, dtype= torch.float, device=device) # [-1, 1] | |
| canvas[:, :, top:top + new_height, left:left + new_width] = ref_img | |
| ref_img = canvas | |
| canvas = None | |
| if return_mask: | |
| if outpainting_dims != None: | |
| canvas = torch.ones((1, 1, final_height, final_width), dtype= torch.float, device=device) # [-1, 1] | |
| canvas[:, :, margin_top + top:margin_top + top + new_height, margin_left + left:margin_left + left + new_width] = 0 | |
| else: | |
| canvas = torch.ones((1, 1, canvas_height, canvas_width), dtype= torch.float, device=device) # [-1, 1] | |
| canvas[:, :, top:top + new_height, left:left + new_width] = 0 | |
| canvas = canvas.to(device) | |
| if return_image: | |
| return convert_tensor_to_image(ref_img), canvas | |
| return ref_img.to(device), canvas | |
| def prepare_video_guide_and_mask( video_guides, video_masks, pre_video_guide, image_size, current_video_length = 81, latent_size = 4, any_mask = False, any_guide_padding = False, guide_inpaint_color = 127.5, keep_video_guide_frames = [], inject_frames = [], outpainting_dims = None, device ="cpu"): | |
| src_videos, src_masks = [], [] | |
| inpaint_color_compressed = guide_inpaint_color/127.5 - 1 | |
| prepend_count = pre_video_guide.shape[1] if pre_video_guide is not None else 0 | |
| for guide_no, (cur_video_guide, cur_video_mask) in enumerate(zip(video_guides, video_masks)): | |
| src_video, src_mask = cur_video_guide, cur_video_mask | |
| if pre_video_guide is not None: | |
| src_video = pre_video_guide if src_video is None else torch.cat( [pre_video_guide, src_video], dim=1) | |
| if any_mask: | |
| src_mask = torch.zeros_like(pre_video_guide[:1]) if src_mask is None else torch.cat( [torch.zeros_like(pre_video_guide[:1]), src_mask], dim=1) | |
| if any_guide_padding: | |
| if src_video is None: | |
| src_video = torch.full( (3, current_video_length, *image_size ), inpaint_color_compressed, dtype = torch.float, device= device) | |
| elif src_video.shape[1] < current_video_length: | |
| src_video = torch.cat([src_video, torch.full( (3, current_video_length - src_video.shape[1], *src_video.shape[-2:] ), inpaint_color_compressed, dtype = src_video.dtype, device= src_video.device) ], dim=1) | |
| elif src_video is not None: | |
| new_num_frames = (src_video.shape[1] - 1) // latent_size * latent_size + 1 | |
| src_video = src_video[:, :new_num_frames] | |
| if any_mask and src_video is not None: | |
| if src_mask is None: | |
| src_mask = torch.ones_like(src_video[:1]) | |
| elif src_mask.shape[1] < src_video.shape[1]: | |
| src_mask = torch.cat([src_mask, torch.full( (1, src_video.shape[1]- src_mask.shape[1], *src_mask.shape[-2:] ), 1, dtype = src_video.dtype, device= src_video.device) ], dim=1) | |
| else: | |
| src_mask = src_mask[:, :src_video.shape[1]] | |
| if src_video is not None : | |
| for k, keep in enumerate(keep_video_guide_frames): | |
| if not keep: | |
| pos = prepend_count + k | |
| src_video[:, pos:pos+1] = inpaint_color_compressed | |
| if any_mask: src_mask[:, pos:pos+1] = 1 | |
| for k, frame in enumerate(inject_frames): | |
| if frame != None: | |
| pos = prepend_count + k | |
| src_video[:, pos:pos+1], msk = fit_image_into_canvas(frame, image_size, guide_inpaint_color, device, True, outpainting_dims, return_mask= any_mask) | |
| if any_mask: src_mask[:, pos:pos+1] = msk | |
| src_videos.append(src_video) | |
| src_masks.append(src_mask) | |
| return src_videos, src_masks | |