Spaces:
Configuration error
Configuration error
| from dataclasses import dataclass | |
| import torch | |
| from torch import Tensor, nn | |
| from .modules.layers import ( | |
| DoubleStreamBlock, | |
| EmbedND, | |
| LastLayer, | |
| MLPEmbedder, | |
| SingleStreamBlock, | |
| timestep_embedding, | |
| DistilledGuidance, | |
| ChromaModulationOut, | |
| SigLIPMultiFeatProjModel, | |
| ) | |
| from .modules.lora import LinearLora, replace_linear_with_lora | |
| class FluxParams: | |
| in_channels: int | |
| out_channels: int | |
| vec_in_dim: int | |
| context_in_dim: int | |
| hidden_size: int | |
| mlp_ratio: float | |
| num_heads: int | |
| depth: int | |
| depth_single_blocks: int | |
| axes_dim: list[int] | |
| theta: int | |
| qkv_bias: bool | |
| guidance_embed: bool | |
| chroma: bool = False | |
| eso: bool = False | |
| class Flux(nn.Module): | |
| """ | |
| Transformer model for flow matching on sequences. | |
| """ | |
| def get_modulations(self, tensor: torch.Tensor, block_type: str, *, idx: int = 0): | |
| # This function slices up the modulations tensor which has the following layout: | |
| # single : num_single_blocks * 3 elements | |
| # double_img : num_double_blocks * 6 elements | |
| # double_txt : num_double_blocks * 6 elements | |
| # final : 2 elements | |
| if block_type == "final": | |
| return (tensor[:, -2:-1, :], tensor[:, -1:, :]) | |
| single_block_count = self.params.depth_single_blocks | |
| double_block_count = self.params.depth | |
| offset = 3 * idx | |
| if block_type == "single": | |
| return ChromaModulationOut.from_offset(tensor, offset) | |
| # Double block modulations are 6 elements so we double 3 * idx. | |
| offset *= 2 | |
| if block_type in {"double_img", "double_txt"}: | |
| # Advance past the single block modulations. | |
| offset += 3 * single_block_count | |
| if block_type == "double_txt": | |
| # Advance past the double block img modulations. | |
| offset += 6 * double_block_count | |
| return ( | |
| ChromaModulationOut.from_offset(tensor, offset), | |
| ChromaModulationOut.from_offset(tensor, offset + 3), | |
| ) | |
| raise ValueError("Bad block_type") | |
| def __init__(self, params: FluxParams): | |
| super().__init__() | |
| self.params = params | |
| self.in_channels = params.in_channels | |
| self.out_channels = params.out_channels | |
| self.chroma = params.chroma | |
| if params.hidden_size % params.num_heads != 0: | |
| raise ValueError( | |
| f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" | |
| ) | |
| pe_dim = params.hidden_size // params.num_heads | |
| if sum(params.axes_dim) != pe_dim: | |
| raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") | |
| self.hidden_size = params.hidden_size | |
| self.num_heads = params.num_heads | |
| self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) | |
| self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) | |
| self.guidance_in = ( | |
| MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity() | |
| ) | |
| self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size) | |
| if self.chroma: | |
| self.distilled_guidance_layer = DistilledGuidance( | |
| in_dim=64, | |
| hidden_dim=5120, | |
| out_dim=3072, | |
| n_layers=5, | |
| ) | |
| else: | |
| self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) | |
| self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) | |
| self.double_blocks = nn.ModuleList( | |
| [ | |
| DoubleStreamBlock( | |
| self.hidden_size, | |
| self.num_heads, | |
| mlp_ratio=params.mlp_ratio, | |
| qkv_bias=params.qkv_bias, | |
| chroma_modulation = self.chroma, | |
| ) | |
| for _ in range(params.depth) | |
| ] | |
| ) | |
| self.single_blocks = nn.ModuleList( | |
| [ | |
| SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, chroma_modulation = self.chroma) | |
| for _ in range(params.depth_single_blocks) | |
| ] | |
| ) | |
| self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, chroma_modulation = self.chroma) | |
| def preprocess_loras(self, model_type, sd): | |
| new_sd = {} | |
| if len(sd) == 0: return sd | |
| def swap_scale_shift(weight): | |
| shift, scale = weight.chunk(2, dim=0) | |
| new_weight = torch.cat([scale, shift], dim=0) | |
| return new_weight | |
| first_key= next(iter(sd)) | |
| if first_key.startswith("lora_unet_"): | |
| new_sd = {} | |
| print("Converting Lora Safetensors format to Lora Diffusers format") | |
| repl_list = ["linear1", "linear2", "modulation", "img_attn", "txt_attn", "img_mlp", "txt_mlp", "img_mod", "txt_mod"] | |
| src_list = ["_" + k + "." for k in repl_list] | |
| src_list2 = ["_" + k + "_" for k in repl_list] | |
| tgt_list = ["." + k + "." for k in repl_list] | |
| for k,v in sd.items(): | |
| k = k.replace("lora_unet_blocks_","diffusion_model.blocks.") | |
| k = k.replace("lora_unet__blocks_","diffusion_model.blocks.") | |
| k = k.replace("lora_unet_single_blocks_","diffusion_model.single_blocks.") | |
| k = k.replace("lora_unet_double_blocks_","diffusion_model.double_blocks.") | |
| for s,s2, t in zip(src_list, src_list2, tgt_list): | |
| k = k.replace(s,t) | |
| k = k.replace(s2,t) | |
| k = k.replace("lora_up","lora_B") | |
| k = k.replace("lora_down","lora_A") | |
| new_sd[k] = v | |
| elif first_key.startswith("transformer."): | |
| root_src = ["time_text_embed.timestep_embedder.linear_1", "time_text_embed.timestep_embedder.linear_2", "time_text_embed.text_embedder.linear_1", "time_text_embed.text_embedder.linear_2", | |
| "time_text_embed.guidance_embedder.linear_1", "time_text_embed.guidance_embedder.linear_2", | |
| "x_embedder", "context_embedder", "proj_out" ] | |
| root_tgt = ["time_in.in_layer", "time_in.out_layer", "vector_in.in_layer", "vector_in.out_layer", | |
| "guidance_in.in_layer", "guidance_in.out_layer", | |
| "img_in", "txt_in", "final_layer.linear" ] | |
| double_src = ["norm1.linear", "norm1_context.linear", "attn.norm_q", "attn.norm_k", "ff.net.0.proj", "ff.net.2", "ff_context.net.0.proj", "ff_context.net.2", "attn.to_out.0" ,"attn.to_add_out", "attn.to_out", ".attn.to_", ".attn.add_q_proj.", ".attn.add_k_proj.", ".attn.add_v_proj.", ] | |
| double_tgt = ["img_mod.lin", "txt_mod.lin", "img_attn.norm.query_norm", "img_attn.norm.key_norm", "img_mlp.0", "img_mlp.2", "txt_mlp.0", "txt_mlp.2", "img_attn.proj", "txt_attn.proj", "img_attn.proj", ".img_attn.", ".txt_attn.q.", ".txt_attn.k.", ".txt_attn.v."] | |
| single_src = ["norm.linear", "attn.norm_q", "attn.norm_k", "proj_out",".attn.to_q.", ".attn.to_k.", ".attn.to_v.", ".proj_mlp."] | |
| single_tgt = ["modulation.lin","norm.query_norm", "norm.key_norm", "linear2", ".linear1_attn_q.", ".linear1_attn_k.", ".linear1_attn_v.", ".linear1_mlp."] | |
| for k,v in sd.items(): | |
| if k.startswith("transformer.single_transformer_blocks"): | |
| k = k.replace("transformer.single_transformer_blocks", "diffusion_model.single_blocks") | |
| for src, tgt in zip(single_src, single_tgt): | |
| k = k.replace(src, tgt) | |
| elif k.startswith("transformer.transformer_blocks"): | |
| k = k.replace("transformer.transformer_blocks", "diffusion_model.double_blocks") | |
| for src, tgt in zip(double_src, double_tgt): | |
| k = k.replace(src, tgt) | |
| else: | |
| k = k.replace("transformer.", "diffusion_model.") | |
| for src, tgt in zip(root_src, root_tgt): | |
| k = k.replace(src, tgt) | |
| if "norm_out.linear" in k: | |
| if "lora_B" in k: | |
| v = swap_scale_shift(v) | |
| k = k.replace("norm_out.linear", "final_layer.adaLN_modulation.1") | |
| new_sd[k] = v | |
| # elif not first_key.startswith("diffusion_model.") and not first_key.startswith("transformer."): | |
| # for k,v in sd.items(): | |
| # if "double" in k: | |
| # k = k.replace(".processor.proj_lora1.", ".img_attn.proj.lora_") | |
| # k = k.replace(".processor.proj_lora2.", ".txt_attn.proj.lora_") | |
| # k = k.replace(".processor.qkv_lora1.", ".img_attn.qkv.lora_") | |
| # k = k.replace(".processor.qkv_lora2.", ".txt_attn.qkv.lora_") | |
| # else: | |
| # k = k.replace(".processor.qkv_lora.", ".linear1_qkv.lora_") | |
| # k = k.replace(".processor.proj_lora.", ".linear2.lora_") | |
| # k = "diffusion_model." + k | |
| # new_sd[k] = v | |
| # from mmgp import safetensors2 | |
| # safetensors2.torch_write_file(new_sd, "fff.safetensors") | |
| else: | |
| new_sd = sd | |
| return new_sd | |
| def forward( | |
| self, | |
| img: Tensor, | |
| img_ids: Tensor, | |
| txt_list, | |
| txt_ids_list, | |
| timesteps: Tensor, | |
| y_list, | |
| img_len = 0, | |
| guidance: Tensor | None = None, | |
| callback= None, | |
| pipeline =None, | |
| siglip_embedding = None, | |
| siglip_embedding_ids = None, | |
| ) -> Tensor: | |
| sz = len(txt_list) | |
| # running on sequences img | |
| img = self.img_in(img) | |
| img_list = [img] if sz==1 else [img, img.clone()] | |
| if self.chroma: | |
| mod_index_length = 344 | |
| distill_timestep = timestep_embedding(timesteps, 16).to(img.device, img.dtype) | |
| guidance = torch.tensor([0.]* distill_timestep.shape[0]) | |
| distil_guidance = timestep_embedding(guidance, 16).to(img.device, img.dtype) | |
| modulation_index = timestep_embedding(torch.arange(mod_index_length, device=img.device), 32).to(img.device, img.dtype) | |
| modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype) | |
| timestep_guidance = torch.cat([distill_timestep, distil_guidance], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1).to(img.dtype).to(img.device, img.dtype) | |
| input_vec = torch.cat([timestep_guidance, modulation_index], dim=-1).to(img.device, img.dtype) | |
| mod_vectors = self.distilled_guidance_layer(input_vec) | |
| else: | |
| vec = self.time_in(timestep_embedding(timesteps, 256)) | |
| if self.params.guidance_embed: | |
| if guidance is None: | |
| raise ValueError("Didn't get guidance strength for guidance distilled model.") | |
| vec += self.guidance_in(timestep_embedding(guidance, 256)) | |
| vec_list = [ vec + self.vector_in(y) for y in y_list] | |
| img = None | |
| txt_list = [self.txt_in(txt) for txt in txt_list ] | |
| if siglip_embedding is not None: | |
| txt_list = [torch.cat((siglip_embedding, txt) , dim=1) for txt in txt_list] | |
| txt_ids_list = [torch.cat((siglip_embedding_ids, txt_id) , dim=1) for txt_id in txt_ids_list] | |
| pe_list = [self.pe_embedder(torch.cat((txt_ids, img_ids), dim=1)) for txt_ids in txt_ids_list] | |
| for i, block in enumerate(self.double_blocks): | |
| if self.chroma: vec_list = [( self.get_modulations(mod_vectors, "double_img", idx=i), self.get_modulations(mod_vectors, "double_txt", idx=i))] * sz | |
| if callback != None: | |
| callback(-1, None, False, True) | |
| if pipeline._interrupt: | |
| return [None] * sz | |
| for img, txt, pe, vec in zip(img_list, txt_list, pe_list, vec_list): | |
| img[...], txt[...] = block(img=img, txt=txt, vec=vec, pe=pe) | |
| img = txt = pe = vec= None | |
| img_list = [torch.cat((txt, img), 1) for txt, img in zip(txt_list, img_list)] | |
| for i, block in enumerate(self.single_blocks): | |
| if self.chroma: vec_list= [self.get_modulations(mod_vectors, "single", idx=i)] * sz | |
| if callback != None: | |
| callback(-1, None, False, True) | |
| if pipeline._interrupt: | |
| return [None] * sz | |
| for img, pe, vec in zip(img_list, pe_list, vec_list): | |
| img[...]= block(x=img, vec=vec, pe=pe) | |
| img = pe = vec = None | |
| img_list = [ img[:, txt.shape[1] : txt.shape[1] + img_len, ...] for img, txt in zip(img_list, txt_list)] | |
| if self.chroma: vec_list = [self.get_modulations(mod_vectors, "final")] * sz | |
| out_list = [] | |
| for i, (img, vec) in enumerate(zip(img_list, vec_list)): | |
| out_list.append( self.final_layer(img, vec)) # (N, T, patch_size ** 2 * out_channels) | |
| img_list[i] = img = vec = None | |
| return out_list | |
| class FluxLoraWrapper(Flux): | |
| def __init__( | |
| self, | |
| lora_rank: int = 128, | |
| lora_scale: float = 1.0, | |
| *args, | |
| **kwargs, | |
| ) -> None: | |
| super().__init__(*args, **kwargs) | |
| self.lora_rank = lora_rank | |
| replace_linear_with_lora( | |
| self, | |
| max_rank=lora_rank, | |
| scale=lora_scale, | |
| ) | |
| def set_lora_scale(self, scale: float) -> None: | |
| for module in self.modules(): | |
| if isinstance(module, LinearLora): | |
| module.set_scale(scale=scale) | |