Spaces:
Running
Running
Upload app.py
#8
by
Howieeeee
- opened
app.py
CHANGED
|
@@ -1,1056 +1,205 @@
|
|
| 1 |
-
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
|
| 2 |
-
import os
|
| 3 |
-
import io
|
| 4 |
import gradio as gr
|
|
|
|
| 5 |
import pandas as pd
|
| 6 |
-
import
|
| 7 |
-
import
|
| 8 |
-
|
| 9 |
-
import
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
cur_json = json.load(ff)
|
| 91 |
-
print(file, type(cur_json))
|
| 92 |
-
if isinstance(cur_json, dict):
|
| 93 |
-
print(cur_json.keys())
|
| 94 |
-
for key in cur_json:
|
| 95 |
-
upload_data[key.replace('_',' ')] = cur_json[key][0]
|
| 96 |
-
print(f"{key}:{cur_json[key][0]}")
|
| 97 |
-
elif cur_file.endswith('json'):
|
| 98 |
-
with open(cur_file) as ff:
|
| 99 |
-
cur_json = json.load(ff)
|
| 100 |
-
print(file, type(cur_json))
|
| 101 |
-
if isinstance(cur_json, dict):
|
| 102 |
-
print(cur_json.keys())
|
| 103 |
-
for key in cur_json:
|
| 104 |
-
upload_data[key.replace('_',' ')] = cur_json[key][0]
|
| 105 |
-
print(f"{key}:{cur_json[key][0]}")
|
| 106 |
-
# add new data
|
| 107 |
-
new_data = [model_name]
|
| 108 |
-
print('upload_data:', upload_data)
|
| 109 |
-
for key in TASK_INFO:
|
| 110 |
-
if key in upload_data:
|
| 111 |
-
new_data.append(upload_data[key])
|
| 112 |
-
else:
|
| 113 |
-
new_data.append(0)
|
| 114 |
-
if team_name =='' or 'vbench' in team_name.lower():
|
| 115 |
-
new_data.append("User Upload")
|
| 116 |
-
else:
|
| 117 |
-
new_data.append(team_name)
|
| 118 |
-
|
| 119 |
-
new_data.append(contact_email.replace(',',' and ')) # Add contact email [private]
|
| 120 |
-
new_data.append(update_time) # Add the update time
|
| 121 |
-
new_data.append(team_name)
|
| 122 |
-
new_data.append(access_type)
|
| 123 |
-
|
| 124 |
-
csv_data.loc[col] = new_data
|
| 125 |
-
csv_data = csv_data.to_csv(CSV_DIR, index=False)
|
| 126 |
-
with open(INFO_DIR,'a') as f:
|
| 127 |
-
f.write(f"{model_name}\t{update_time}\t{model_publish}\t{model_resolution}\t{model_fps}\t{model_frame}\t{model_video_length}\t{model_checkpoint}\t{model_commit_id}\t{model_video_format}\n")
|
| 128 |
-
submission_repo.push_to_hub()
|
| 129 |
-
print("success update", model_name)
|
| 130 |
-
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
| 131 |
-
|
| 132 |
-
def add_new_eval_i2v(
|
| 133 |
-
input_file,
|
| 134 |
-
model_name_textbox: str,
|
| 135 |
-
revision_name_textbox: str,
|
| 136 |
-
model_link: str,
|
| 137 |
-
team_name: str,
|
| 138 |
-
contact_email: str,
|
| 139 |
-
access_type: str,
|
| 140 |
-
model_publish: str,
|
| 141 |
-
model_resolution: str,
|
| 142 |
-
model_fps: str,
|
| 143 |
-
model_frame: str,
|
| 144 |
-
model_video_length: str,
|
| 145 |
-
model_checkpoint: str,
|
| 146 |
-
model_commit_id: str,
|
| 147 |
-
model_video_format: str
|
| 148 |
-
):
|
| 149 |
-
COLNAME2KEY={
|
| 150 |
-
"Video-Text Camera Motion":"camera_motion",
|
| 151 |
-
"Video-Image Subject Consistency": "i2v_subject",
|
| 152 |
-
"Video-Image Background Consistency": "i2v_background",
|
| 153 |
-
"Subject Consistency": "subject_consistency",
|
| 154 |
-
"Background Consistency": "background_consistency",
|
| 155 |
-
"Motion Smoothness": "motion_smoothness",
|
| 156 |
-
"Dynamic Degree": "dynamic_degree",
|
| 157 |
-
"Aesthetic Quality": "aesthetic_quality",
|
| 158 |
-
"Imaging Quality": "imaging_quality",
|
| 159 |
-
"Temporal Flickering": "temporal_flickering"
|
| 160 |
-
}
|
| 161 |
-
if input_file is None:
|
| 162 |
-
return "Error! Empty file!"
|
| 163 |
-
if model_link == '' or model_name_textbox == '' or contact_email == '':
|
| 164 |
-
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
|
| 165 |
-
|
| 166 |
-
upload_content = input_file
|
| 167 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 168 |
-
submission_repo.git_pull()
|
| 169 |
-
filename = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 170 |
-
|
| 171 |
-
now = datetime.datetime.now()
|
| 172 |
-
update_time = now.strftime("%Y-%m-%d") # Capture update time
|
| 173 |
-
with open(f'{SUBMISSION_NAME}/{filename}.zip','wb') as f:
|
| 174 |
-
f.write(input_file)
|
| 175 |
-
# shutil.copyfile(CSV_DIR, os.path.join(SUBMISSION_NAME, f"{input_file}"))
|
| 176 |
-
|
| 177 |
-
csv_data = pd.read_csv(I2V_DIR)
|
| 178 |
-
|
| 179 |
-
if revision_name_textbox == '':
|
| 180 |
-
col = csv_data.shape[0]
|
| 181 |
-
model_name = model_name_textbox.replace(',',' ')
|
| 182 |
-
else:
|
| 183 |
-
model_name = revision_name_textbox.replace(',',' ')
|
| 184 |
-
model_name_list = csv_data['Model Name (clickable)']
|
| 185 |
-
name_list = [name.split(']')[0][1:] for name in model_name_list]
|
| 186 |
-
if revision_name_textbox not in name_list:
|
| 187 |
-
col = csv_data.shape[0]
|
| 188 |
-
else:
|
| 189 |
-
col = name_list.index(revision_name_textbox)
|
| 190 |
-
if model_link == '':
|
| 191 |
-
model_name = model_name # no url
|
| 192 |
-
else:
|
| 193 |
-
model_name = '[' + model_name + '](' + model_link + ')'
|
| 194 |
-
|
| 195 |
-
os.makedirs(filename, exist_ok=True)
|
| 196 |
-
with zipfile.ZipFile(io.BytesIO(input_file), 'r') as zip_ref:
|
| 197 |
-
zip_ref.extractall(filename)
|
| 198 |
-
|
| 199 |
-
upload_data = {}
|
| 200 |
-
for file in os.listdir(filename):
|
| 201 |
-
if file.startswith('.') or file.startswith('__'):
|
| 202 |
-
print(f"Skip the file: {file}")
|
| 203 |
-
continue
|
| 204 |
-
cur_file = os.path.join(filename, file)
|
| 205 |
-
if os.path.isdir(cur_file):
|
| 206 |
-
for subfile in os.listdir(cur_file):
|
| 207 |
-
if subfile.endswith(".json"):
|
| 208 |
-
with open(os.path.join(cur_file, subfile)) as ff:
|
| 209 |
-
cur_json = json.load(ff)
|
| 210 |
-
print(file, type(cur_json))
|
| 211 |
-
if isinstance(cur_json, dict):
|
| 212 |
-
print(cur_json.keys())
|
| 213 |
-
for key in cur_json:
|
| 214 |
-
upload_data[key] = cur_json[key][0]
|
| 215 |
-
print(f"{key}:{cur_json[key][0]}")
|
| 216 |
-
elif cur_file.endswith('json'):
|
| 217 |
-
with open(cur_file) as ff:
|
| 218 |
-
cur_json = json.load(ff)
|
| 219 |
-
print(file, type(cur_json))
|
| 220 |
-
if isinstance(cur_json, dict):
|
| 221 |
-
print(cur_json.keys())
|
| 222 |
-
for key in cur_json:
|
| 223 |
-
upload_data[key] = cur_json[key][0]
|
| 224 |
-
print(f"{key}:{cur_json[key][0]}")
|
| 225 |
-
# add new data
|
| 226 |
-
new_data = [model_name]
|
| 227 |
-
print('upload_data:', upload_data)
|
| 228 |
-
I2V_HEAD= ["Video-Text Camera Motion",
|
| 229 |
-
"Video-Image Subject Consistency",
|
| 230 |
-
"Video-Image Background Consistency",
|
| 231 |
-
"Subject Consistency",
|
| 232 |
-
"Background Consistency",
|
| 233 |
-
"Temporal Flickering",
|
| 234 |
-
"Motion Smoothness",
|
| 235 |
-
"Dynamic Degree",
|
| 236 |
-
"Aesthetic Quality",
|
| 237 |
-
"Imaging Quality" ]
|
| 238 |
-
for key in I2V_HEAD :
|
| 239 |
-
sub_key = COLNAME2KEY[key]
|
| 240 |
-
if sub_key in upload_data:
|
| 241 |
-
new_data.append(upload_data[sub_key])
|
| 242 |
-
else:
|
| 243 |
-
new_data.append(0)
|
| 244 |
-
if team_name =='' or 'vbench' in team_name.lower():
|
| 245 |
-
new_data.append("User Upload")
|
| 246 |
-
else:
|
| 247 |
-
new_data.append(team_name)
|
| 248 |
-
|
| 249 |
-
new_data.append(contact_email.replace(',',' and ')) # Add contact email [private]
|
| 250 |
-
new_data.append(update_time) # Add the update time
|
| 251 |
-
new_data.append(team_name)
|
| 252 |
-
new_data.append(access_type)
|
| 253 |
-
|
| 254 |
-
csv_data.loc[col] = new_data
|
| 255 |
-
csv_data = csv_data.to_csv(I2V_DIR , index=False)
|
| 256 |
-
with open(INFO_DIR,'a') as f:
|
| 257 |
-
f.write(f"{model_name}\t{update_time}\t{model_publish}\t{model_resolution}\t{model_fps}\t{model_frame}\t{model_video_length}\t{model_checkpoint}\t{model_commit_id}\t{model_video_format}\n")
|
| 258 |
-
submission_repo.push_to_hub()
|
| 259 |
-
print("success update", model_name)
|
| 260 |
-
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
| 261 |
-
|
| 262 |
-
def get_normalized_df(df):
|
| 263 |
-
# final_score = df.drop('name', axis=1).sum(axis=1)
|
| 264 |
-
# df.insert(1, 'Overall Score', final_score)
|
| 265 |
-
normalize_df = df.copy().fillna(0.0)
|
| 266 |
-
for column in normalize_df.columns[1:-5]:
|
| 267 |
-
min_val = NORMALIZE_DIC[column]['Min']
|
| 268 |
-
max_val = NORMALIZE_DIC[column]['Max']
|
| 269 |
-
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val)
|
| 270 |
-
return normalize_df
|
| 271 |
-
|
| 272 |
-
def get_normalized_i2v_df(df):
|
| 273 |
-
normalize_df = df.copy().fillna(0.0)
|
| 274 |
-
for column in normalize_df.columns[1:-5]:
|
| 275 |
-
min_val = NORMALIZE_DIC_I2V[column]['Min']
|
| 276 |
-
max_val = NORMALIZE_DIC_I2V[column]['Max']
|
| 277 |
-
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val)
|
| 278 |
-
return normalize_df
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
def calculate_selected_score(df, selected_columns):
|
| 282 |
-
# selected_score = df[selected_columns].sum(axis=1)
|
| 283 |
-
selected_QUALITY = [i for i in selected_columns if i in QUALITY_LIST]
|
| 284 |
-
selected_SEMANTIC = [i for i in selected_columns if i in SEMANTIC_LIST]
|
| 285 |
-
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_QUALITY])
|
| 286 |
-
selected_semantic_score = df[selected_SEMANTIC].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_SEMANTIC ])
|
| 287 |
-
if selected_quality_score.isna().any().any() and selected_semantic_score.isna().any().any():
|
| 288 |
-
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
|
| 289 |
-
return selected_score.fillna(0.0)
|
| 290 |
-
if selected_quality_score.isna().any().any():
|
| 291 |
-
return selected_semantic_score
|
| 292 |
-
if selected_semantic_score.isna().any().any():
|
| 293 |
-
return selected_quality_score
|
| 294 |
-
# print(selected_semantic_score,selected_quality_score )
|
| 295 |
-
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
|
| 296 |
-
return selected_score.fillna(0.0)
|
| 297 |
-
|
| 298 |
-
def calculate_selected_score_i2v(df, selected_columns):
|
| 299 |
-
# selected_score = df[selected_columns].sum(axis=1)
|
| 300 |
-
selected_QUALITY = [i for i in selected_columns if i in I2V_QUALITY_LIST]
|
| 301 |
-
selected_I2V = [i for i in selected_columns if i in I2V_LIST]
|
| 302 |
-
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_QUALITY])
|
| 303 |
-
selected_i2v_score = df[selected_I2V].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_I2V ])
|
| 304 |
-
if selected_quality_score.isna().any().any() and selected_i2v_score.isna().any().any():
|
| 305 |
-
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
|
| 306 |
-
return selected_score.fillna(0.0)
|
| 307 |
-
if selected_quality_score.isna().any().any():
|
| 308 |
-
return selected_i2v_score
|
| 309 |
-
if selected_i2v_score.isna().any().any():
|
| 310 |
-
return selected_quality_score
|
| 311 |
-
# print(selected_i2v_score,selected_quality_score )
|
| 312 |
-
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
|
| 313 |
-
return selected_score.fillna(0.0)
|
| 314 |
-
|
| 315 |
-
def get_final_score(df, selected_columns):
|
| 316 |
-
normalize_df = get_normalized_df(df)
|
| 317 |
-
#final_score = normalize_df.drop('name', axis=1).sum(axis=1)
|
| 318 |
-
try:
|
| 319 |
-
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1).drop("Evaluated by", axis=1).drop("Accessibility", axis=1):
|
| 320 |
-
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
|
| 321 |
-
except:
|
| 322 |
-
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1):
|
| 323 |
-
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
|
| 324 |
-
quality_score = normalize_df[QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in QUALITY_LIST])
|
| 325 |
-
semantic_score = normalize_df[SEMANTIC_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in SEMANTIC_LIST ])
|
| 326 |
-
final_score = (quality_score * QUALITY_WEIGHT + semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
|
| 327 |
-
if 'Total Score' in df:
|
| 328 |
-
df['Total Score'] = final_score
|
| 329 |
-
else:
|
| 330 |
-
df.insert(1, 'Total Score', final_score)
|
| 331 |
-
if 'Semantic Score' in df:
|
| 332 |
-
df['Semantic Score'] = semantic_score
|
| 333 |
-
else:
|
| 334 |
-
df.insert(2, 'Semantic Score', semantic_score)
|
| 335 |
-
if 'Quality Score' in df:
|
| 336 |
-
df['Quality Score'] = quality_score
|
| 337 |
-
else:
|
| 338 |
-
df.insert(3, 'Quality Score', quality_score)
|
| 339 |
-
selected_score = calculate_selected_score(normalize_df, selected_columns)
|
| 340 |
-
if 'Selected Score' in df:
|
| 341 |
-
df['Selected Score'] = selected_score
|
| 342 |
-
else:
|
| 343 |
-
df.insert(1, 'Selected Score', selected_score)
|
| 344 |
-
return df
|
| 345 |
-
|
| 346 |
-
def get_final_score_i2v(df, selected_columns):
|
| 347 |
-
normalize_df = get_normalized_i2v_df(df)
|
| 348 |
-
try:
|
| 349 |
-
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1).drop("Evaluated by", axis=1).drop("Accessibility", axis=1):
|
| 350 |
-
normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name]
|
| 351 |
-
except:
|
| 352 |
-
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop("Sampled by", axis=1).drop('Mail', axis=1).drop('Date',axis=1):
|
| 353 |
-
normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name]
|
| 354 |
-
quality_score = normalize_df[I2V_QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_QUALITY_LIST])
|
| 355 |
-
i2v_score = normalize_df[I2V_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_LIST ])
|
| 356 |
-
final_score = (quality_score * I2V_QUALITY_WEIGHT + i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT)
|
| 357 |
-
if 'Total Score' in df:
|
| 358 |
-
df['Total Score'] = final_score
|
| 359 |
-
else:
|
| 360 |
-
df.insert(1, 'Total Score', final_score)
|
| 361 |
-
if 'I2V Score' in df:
|
| 362 |
-
df['I2V Score'] = i2v_score
|
| 363 |
-
else:
|
| 364 |
-
df.insert(2, 'I2V Score', i2v_score)
|
| 365 |
-
if 'Quality Score' in df:
|
| 366 |
-
df['Quality Score'] = quality_score
|
| 367 |
-
else:
|
| 368 |
-
df.insert(3, 'Quality Score', quality_score)
|
| 369 |
-
selected_score = calculate_selected_score_i2v(normalize_df, selected_columns)
|
| 370 |
-
if 'Selected Score' in df:
|
| 371 |
-
df['Selected Score'] = selected_score
|
| 372 |
-
else:
|
| 373 |
-
df.insert(1, 'Selected Score', selected_score)
|
| 374 |
-
# df.loc[df[9:].isnull().any(axis=1), ['Total Score', 'I2V Score']] = 'N.A.'
|
| 375 |
-
mask = df.iloc[:, 5:-5].isnull().any(axis=1)
|
| 376 |
-
df.loc[mask, ['Total Score', 'I2V Score','Selected Score' ]] = np.nan
|
| 377 |
-
# df.fillna('N.A.', inplace=True)
|
| 378 |
-
return df
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
def get_final_score_quality(df, selected_columns):
|
| 383 |
-
normalize_df = get_normalized_df(df)
|
| 384 |
-
for name in normalize_df.drop('Model Name (clickable)', axis=1):
|
| 385 |
-
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
|
| 386 |
-
quality_score = normalize_df[QUALITY_TAB].sum(axis=1) / sum([DIM_WEIGHT[i] for i in QUALITY_TAB])
|
| 387 |
-
|
| 388 |
-
if 'Quality Score' in df:
|
| 389 |
-
df['Quality Score'] = quality_score
|
| 390 |
-
else:
|
| 391 |
-
df.insert(1, 'Quality Score', quality_score)
|
| 392 |
-
# selected_score = normalize_df[selected_columns].sum(axis=1) / len(selected_columns)
|
| 393 |
-
selected_score = normalize_df[selected_columns].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_columns])
|
| 394 |
-
if 'Selected Score' in df:
|
| 395 |
-
df['Selected Score'] = selected_score
|
| 396 |
-
else:
|
| 397 |
-
df.insert(1, 'Selected Score', selected_score)
|
| 398 |
-
return df
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
def get_baseline_df():
|
| 403 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 404 |
-
submission_repo.git_pull()
|
| 405 |
-
df = pd.read_csv(CSV_DIR)
|
| 406 |
-
df = get_final_score(df, checkbox_group.value)
|
| 407 |
-
df = df.sort_values(by="Selected Score", ascending=False)
|
| 408 |
-
present_columns = MODEL_INFO + checkbox_group.value
|
| 409 |
-
# print(present_columns)
|
| 410 |
-
df = df[present_columns]
|
| 411 |
-
# Add this line to display the results evaluated by VBench by default
|
| 412 |
-
df = df[df['Evaluated by'] == 'VBench Team']
|
| 413 |
-
df = convert_scores_to_percentage(df)
|
| 414 |
-
return df
|
| 415 |
-
|
| 416 |
-
def get_baseline_df_quality():
|
| 417 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 418 |
-
submission_repo.git_pull()
|
| 419 |
-
df = pd.read_csv(QUALITY_DIR)
|
| 420 |
-
df = get_final_score_quality(df, checkbox_group_quality.value)
|
| 421 |
-
df = df.sort_values(by="Selected Score", ascending=False)
|
| 422 |
-
present_columns = MODEL_INFO_TAB_QUALITY + checkbox_group_quality.value
|
| 423 |
-
df = df[present_columns]
|
| 424 |
-
df = convert_scores_to_percentage(df)
|
| 425 |
-
return df
|
| 426 |
-
|
| 427 |
-
def get_baseline_df_i2v():
|
| 428 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 429 |
-
submission_repo.git_pull()
|
| 430 |
-
df = pd.read_csv(I2V_DIR)
|
| 431 |
-
df = get_final_score_i2v(df, checkbox_group_i2v.value)
|
| 432 |
-
df = df.sort_values(by="Selected Score", ascending=False)
|
| 433 |
-
present_columns = MODEL_INFO_TAB_I2V + checkbox_group_i2v.value
|
| 434 |
-
# df = df[df["Sampled by"] == 'VBench Team']
|
| 435 |
-
df = df[present_columns]
|
| 436 |
-
df = convert_scores_to_percentage(df)
|
| 437 |
-
return df
|
| 438 |
-
|
| 439 |
-
def get_baseline_df_long():
|
| 440 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 441 |
-
submission_repo.git_pull()
|
| 442 |
-
df = pd.read_csv(LONG_DIR)
|
| 443 |
-
df = get_final_score(df, checkbox_group.value)
|
| 444 |
-
df = df.sort_values(by="Selected Score", ascending=False)
|
| 445 |
-
present_columns = MODEL_INFO + checkbox_group.value
|
| 446 |
-
# df = df[df["Sampled by"] == 'VBench Team']
|
| 447 |
-
df = df[present_columns]
|
| 448 |
-
df = convert_scores_to_percentage(df)
|
| 449 |
-
return df
|
| 450 |
-
|
| 451 |
-
def get_baseline_df_2():
|
| 452 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 453 |
-
submission_repo.git_pull()
|
| 454 |
-
df = pd.read_csv(VBENCH2_DIR)
|
| 455 |
-
# df = get_final_score(df, checkbox_group.value)
|
| 456 |
-
# df = df.sort_values(by="Selected Score", ascending=False)
|
| 457 |
-
# present_columns = MODEL_INFO + checkbox_group.value
|
| 458 |
-
# print(present_columns)
|
| 459 |
-
df = df[COLUMN_NAMES_2]
|
| 460 |
-
# Add this line to display the results evaluated by VBench by default
|
| 461 |
-
df = convert_scores_to_percentage(df)
|
| 462 |
-
return df
|
| 463 |
-
|
| 464 |
-
def get_all_df(selected_columns, dir=CSV_DIR):
|
| 465 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 466 |
-
submission_repo.git_pull()
|
| 467 |
-
df = pd.read_csv(dir)
|
| 468 |
-
df = get_final_score(df, selected_columns)
|
| 469 |
-
df = df.sort_values(by="Selected Score", ascending=False)
|
| 470 |
-
return df
|
| 471 |
-
|
| 472 |
-
def get_all_df_quality(selected_columns, dir=QUALITY_DIR):
|
| 473 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 474 |
-
submission_repo.git_pull()
|
| 475 |
-
df = pd.read_csv(dir)
|
| 476 |
-
df = get_final_score_quality(df, selected_columns)
|
| 477 |
-
df = df.sort_values(by="Selected Score", ascending=False)
|
| 478 |
-
return df
|
| 479 |
-
|
| 480 |
-
def get_all_df_i2v(selected_columns, dir=I2V_DIR):
|
| 481 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 482 |
-
submission_repo.git_pull()
|
| 483 |
-
df = pd.read_csv(dir)
|
| 484 |
-
df = get_final_score_i2v(df, selected_columns)
|
| 485 |
-
df = df.sort_values(by="Selected Score", ascending=False)
|
| 486 |
-
return df
|
| 487 |
-
|
| 488 |
-
def get_all_df_long(selected_columns, dir=LONG_DIR):
|
| 489 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 490 |
-
submission_repo.git_pull()
|
| 491 |
-
df = pd.read_csv(dir)
|
| 492 |
-
df = get_final_score(df, selected_columns)
|
| 493 |
-
df = df.sort_values(by="Selected Score", ascending=False)
|
| 494 |
-
return df
|
| 495 |
-
|
| 496 |
-
def get_all_df2(dir=VBENCH2_DIR):
|
| 497 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
| 498 |
-
submission_repo.git_pull()
|
| 499 |
-
df = pd.read_csv(dir)
|
| 500 |
-
# df = get_final_score(df, selected_columns)
|
| 501 |
-
# df = df.sort_values(by="Selected Score", ascending=False)
|
| 502 |
-
return df
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
def convert_scores_to_percentage(df):
|
| 506 |
-
# Operate on every column in the DataFrame (except the'name 'column)
|
| 507 |
-
if "Sampled by" in df.columns:
|
| 508 |
-
skip_col =3
|
| 509 |
-
else:
|
| 510 |
-
skip_col =1
|
| 511 |
-
print(df)
|
| 512 |
-
for column in df.columns[skip_col:]: # 假设第一列是'name'
|
| 513 |
-
# if df[column].isdigit():
|
| 514 |
-
# print(df[column])
|
| 515 |
-
# is_numeric = pd.to_numeric(df[column], errors='coerce').notna().all()
|
| 516 |
-
valid_numeric_count = pd.to_numeric(df[column], errors='coerce').notna().sum()
|
| 517 |
-
if valid_numeric_count > 0:
|
| 518 |
-
df[column] = round(df[column] * 100,2)
|
| 519 |
-
df[column] = df[column].apply(lambda x: f"{x:05.2f}%" if pd.notna(pd.to_numeric(x, errors='coerce')) else x)
|
| 520 |
-
# df[column] = df[column].apply(lambda x: f"{x:05.2f}") + '%'
|
| 521 |
-
return df
|
| 522 |
-
|
| 523 |
-
def choose_all_quailty():
|
| 524 |
-
return gr.update(value=QUALITY_LIST)
|
| 525 |
-
|
| 526 |
-
def choose_all_semantic():
|
| 527 |
-
return gr.update(value=SEMANTIC_LIST)
|
| 528 |
-
|
| 529 |
-
def disable_all():
|
| 530 |
-
return gr.update(value=[])
|
| 531 |
-
|
| 532 |
-
def enable_all():
|
| 533 |
-
return gr.update(value=TASK_INFO)
|
| 534 |
-
|
| 535 |
-
# select function
|
| 536 |
-
def on_filter_model_size_method_change(selected_columns, vbench_team_sample, vbench_team_eval=False):
|
| 537 |
-
updated_data = get_all_df(selected_columns, CSV_DIR)
|
| 538 |
-
if vbench_team_sample:
|
| 539 |
-
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team']
|
| 540 |
-
if vbench_team_eval:
|
| 541 |
-
updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team']
|
| 542 |
-
#print(updated_data)
|
| 543 |
-
# columns:
|
| 544 |
-
selected_columns = [item for item in TASK_INFO if item in selected_columns]
|
| 545 |
-
present_columns = MODEL_INFO + selected_columns
|
| 546 |
-
updated_data = updated_data[present_columns]
|
| 547 |
-
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
|
| 548 |
-
updated_data = convert_scores_to_percentage(updated_data)
|
| 549 |
-
updated_headers = present_columns
|
| 550 |
-
print(COLUMN_NAMES,updated_headers,DATA_TITILE_TYPE )
|
| 551 |
-
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
|
| 552 |
-
# print(updated_data,present_columns,update_datatype)
|
| 553 |
-
filter_component = gr.components.Dataframe(
|
| 554 |
-
value=updated_data,
|
| 555 |
-
headers=updated_headers,
|
| 556 |
-
type="pandas",
|
| 557 |
-
datatype=update_datatype,
|
| 558 |
-
interactive=False,
|
| 559 |
-
visible=True,
|
| 560 |
-
)
|
| 561 |
-
return filter_component#.value
|
| 562 |
-
|
| 563 |
-
def on_filter_model_size_method_change_quality(selected_columns):
|
| 564 |
-
updated_data = get_all_df_quality(selected_columns, QUALITY_DIR)
|
| 565 |
-
#print(updated_data)
|
| 566 |
-
# columns:
|
| 567 |
-
selected_columns = [item for item in QUALITY_TAB if item in selected_columns]
|
| 568 |
-
present_columns = MODEL_INFO_TAB_QUALITY + selected_columns
|
| 569 |
-
updated_data = updated_data[present_columns]
|
| 570 |
-
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
|
| 571 |
-
updated_data = convert_scores_to_percentage(updated_data)
|
| 572 |
-
updated_headers = present_columns
|
| 573 |
-
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
|
| 574 |
-
# print(updated_data,present_columns,update_datatype)
|
| 575 |
-
filter_component = gr.components.Dataframe(
|
| 576 |
-
value=updated_data,
|
| 577 |
-
headers=updated_headers,
|
| 578 |
-
type="pandas",
|
| 579 |
-
datatype=update_datatype,
|
| 580 |
-
interactive=False,
|
| 581 |
-
visible=True,
|
| 582 |
-
)
|
| 583 |
-
return filter_component#.value
|
| 584 |
-
|
| 585 |
-
def on_filter_model_size_method_change_i2v(selected_columns,vbench_team_sample, vbench_team_eval=False):
|
| 586 |
-
updated_data = get_all_df_i2v(selected_columns, I2V_DIR)
|
| 587 |
-
if vbench_team_sample:
|
| 588 |
-
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team']
|
| 589 |
-
# if vbench_team_eval:
|
| 590 |
-
# updated_data = updated_data[updated_data['Eval'] == 'VBench Team']
|
| 591 |
-
selected_columns = [item for item in I2V_TAB if item in selected_columns]
|
| 592 |
-
present_columns = MODEL_INFO_TAB_I2V + selected_columns
|
| 593 |
-
updated_data = updated_data[present_columns]
|
| 594 |
-
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
|
| 595 |
-
updated_data = convert_scores_to_percentage(updated_data)
|
| 596 |
-
updated_headers = present_columns
|
| 597 |
-
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES_I2V.index(x)] for x in updated_headers]
|
| 598 |
-
# print(updated_data,present_columns,update_datatype)
|
| 599 |
-
filter_component = gr.components.Dataframe(
|
| 600 |
-
value=updated_data,
|
| 601 |
-
headers=updated_headers,
|
| 602 |
-
type="pandas",
|
| 603 |
-
datatype=update_datatype,
|
| 604 |
-
interactive=False,
|
| 605 |
-
visible=True,
|
| 606 |
-
)
|
| 607 |
-
return filter_component#.value
|
| 608 |
-
|
| 609 |
-
def on_filter_model_size_method_change_long(selected_columns, vbench_team_sample, vbench_team_eval=False):
|
| 610 |
-
updated_data = get_all_df_long(selected_columns, LONG_DIR)
|
| 611 |
-
if vbench_team_sample:
|
| 612 |
-
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team']
|
| 613 |
-
if vbench_team_eval:
|
| 614 |
-
updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team']
|
| 615 |
-
selected_columns = [item for item in TASK_INFO if item in selected_columns]
|
| 616 |
-
present_columns = MODEL_INFO + selected_columns
|
| 617 |
-
updated_data = updated_data[present_columns]
|
| 618 |
-
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
|
| 619 |
-
updated_data = convert_scores_to_percentage(updated_data)
|
| 620 |
-
updated_headers = present_columns
|
| 621 |
-
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
|
| 622 |
-
filter_component = gr.components.Dataframe(
|
| 623 |
-
value=updated_data,
|
| 624 |
-
headers=updated_headers,
|
| 625 |
-
type="pandas",
|
| 626 |
-
datatype=update_datatype,
|
| 627 |
-
interactive=False,
|
| 628 |
-
visible=True,
|
| 629 |
-
)
|
| 630 |
-
return filter_component#.value
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
def on_filter_model_size_method_change_2(vbench_team_sample, vbench_team_eval=False):
|
| 634 |
-
updated_data = get_all_df(VBENCH2_DIR)
|
| 635 |
-
if vbench_team_sample:
|
| 636 |
-
updated_data = updated_data[updated_data["Sampled by"] == 'VBench Team']
|
| 637 |
-
if vbench_team_eval:
|
| 638 |
-
updated_data = updated_data[updated_data['Evaluated by'] == 'VBench Team']
|
| 639 |
-
#print(updated_data)
|
| 640 |
-
# columns:
|
| 641 |
-
# selected_columns = [item for item in TASK_INFO if item in selected_columns]
|
| 642 |
-
# present_columns = MODEL_INFO + selected_columns
|
| 643 |
-
# updated_data = updated_data[present_columns]
|
| 644 |
-
# updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
|
| 645 |
-
# updated_data = convert_scores_to_percentage(updated_data)
|
| 646 |
-
updated_headers = COLUMN_NAMES_2
|
| 647 |
-
# print(COLUMN_NAMES,updated_headers,DATA_TITILE_TYPE )
|
| 648 |
-
update_datatype = VBENCH2_TITLE_TYPE
|
| 649 |
-
# print(updated_data,present_columns,update_datatype)
|
| 650 |
-
filter_component = gr.components.Dataframe(
|
| 651 |
-
value=updated_data,
|
| 652 |
-
headers=updated_headers,
|
| 653 |
-
type="pandas",
|
| 654 |
-
datatype=update_datatype,
|
| 655 |
interactive=False,
|
| 656 |
-
visible=True,
|
| 657 |
-
)
|
| 658 |
-
return filter_component#.value
|
| 659 |
-
|
| 660 |
-
block = gr.Blocks()
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
with block:
|
| 664 |
-
gr.Markdown(
|
| 665 |
-
LEADERBORAD_INTRODUCTION
|
| 666 |
)
|
| 667 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 668 |
-
# Table 0
|
| 669 |
-
with gr.TabItem("📊 VBench 1.0", elem_id="vbench-tab-table", id=1):
|
| 670 |
-
with gr.Row():
|
| 671 |
-
with gr.Accordion("Citation", open=False):
|
| 672 |
-
citation_button = gr.Textbox(
|
| 673 |
-
value=CITATION_BUTTON_TEXT,
|
| 674 |
-
label=CITATION_BUTTON_LABEL,
|
| 675 |
-
elem_id="citation-button",
|
| 676 |
-
lines=14,
|
| 677 |
-
)
|
| 678 |
-
|
| 679 |
-
gr.Markdown(
|
| 680 |
-
TABLE_INTRODUCTION
|
| 681 |
-
)
|
| 682 |
-
with gr.Row():
|
| 683 |
-
with gr.Column(scale=0.2):
|
| 684 |
-
choosen_q = gr.Button("Select Quality Dimensions")
|
| 685 |
-
choosen_s = gr.Button("Select Semantic Dimensions")
|
| 686 |
-
# enable_b = gr.Button("Select All")
|
| 687 |
-
disable_b = gr.Button("Deselect All")
|
| 688 |
|
| 689 |
-
with gr.Column(scale=0.8):
|
| 690 |
-
vbench_team_filter = gr.Checkbox(
|
| 691 |
-
label="Sampled by VBench Team (Uncheck to view all submissions)",
|
| 692 |
-
value=False,
|
| 693 |
-
interactive=True
|
| 694 |
-
)
|
| 695 |
-
vbench_validate_filter = gr.Checkbox(
|
| 696 |
-
label="Evaluated by VBench Team (Uncheck to view all submissions)",
|
| 697 |
-
value=True,
|
| 698 |
-
interactive=True
|
| 699 |
-
)
|
| 700 |
-
# selection for column part:
|
| 701 |
-
checkbox_group = gr.CheckboxGroup(
|
| 702 |
-
choices=TASK_INFO,
|
| 703 |
-
value=DEFAULT_INFO,
|
| 704 |
-
label="Evaluation Dimension",
|
| 705 |
-
interactive=True,
|
| 706 |
-
)
|
| 707 |
-
|
| 708 |
-
data_component = gr.components.Dataframe(
|
| 709 |
-
value=get_baseline_df,
|
| 710 |
-
headers=COLUMN_NAMES,
|
| 711 |
-
type="pandas",
|
| 712 |
-
datatype=DATA_TITILE_TYPE,
|
| 713 |
-
interactive=False,
|
| 714 |
-
visible=True,
|
| 715 |
-
height=700,
|
| 716 |
-
)
|
| 717 |
-
|
| 718 |
-
choosen_q.click(choose_all_quailty, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter,vbench_validate_filter], outputs=data_component)
|
| 719 |
-
choosen_s.click(choose_all_semantic, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter,vbench_validate_filter], outputs=data_component)
|
| 720 |
-
# enable_b.click(enable_all, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter], outputs=data_component)
|
| 721 |
-
disable_b.click(disable_all, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter, vbench_validate_filter], outputs=data_component)
|
| 722 |
-
checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[ checkbox_group, vbench_team_filter, vbench_validate_filter], outputs=data_component)
|
| 723 |
-
vbench_team_filter.change(fn=on_filter_model_size_method_change, inputs=[checkbox_group, vbench_team_filter, vbench_validate_filter], outputs=data_component)
|
| 724 |
-
vbench_validate_filter.change(fn=on_filter_model_size_method_change, inputs=[checkbox_group, vbench_team_filter, vbench_validate_filter], outputs=data_component)
|
| 725 |
-
# VBench 2.0
|
| 726 |
-
with gr.TabItem("⭐ VBench 2.0", elem_id="vbench-tab-table", id=2):
|
| 727 |
-
with gr.Row():
|
| 728 |
-
with gr.Accordion("Citation", open=False):
|
| 729 |
-
citation_button2 = gr.Textbox(
|
| 730 |
-
value=CITATION_2_BUTTON_TEXT,
|
| 731 |
-
label=CITATION_BUTTON_LABEL,
|
| 732 |
-
elem_id="citation-button",
|
| 733 |
-
lines=14,
|
| 734 |
-
)
|
| 735 |
-
|
| 736 |
-
gr.Markdown(
|
| 737 |
-
TABLE_INTRODUCTION
|
| 738 |
-
)
|
| 739 |
-
with gr.Row():
|
| 740 |
-
with gr.Column():
|
| 741 |
-
vbench_team_filter_2 = gr.Checkbox(
|
| 742 |
-
label="Sampled by VBench Team (Uncheck to view all submissions)",
|
| 743 |
-
value=False,
|
| 744 |
-
interactive=True
|
| 745 |
-
)
|
| 746 |
-
vbench_validate_filter_2 = gr.Checkbox(
|
| 747 |
-
label="Evaluated by VBench Team (Uncheck to view all submissions)",
|
| 748 |
-
value=True,
|
| 749 |
-
interactive=True
|
| 750 |
-
)
|
| 751 |
-
|
| 752 |
-
|
| 753 |
-
data_component_2 = gr.components.Dataframe(
|
| 754 |
-
value=get_baseline_df_2,
|
| 755 |
-
headers=COLUMN_NAMES_2,
|
| 756 |
-
type="pandas",
|
| 757 |
-
datatype=VBENCH2_TITLE_TYPE,
|
| 758 |
-
interactive=False,
|
| 759 |
-
visible=True,
|
| 760 |
-
height=700,
|
| 761 |
-
)
|
| 762 |
-
vbench_team_filter.change(fn=on_filter_model_size_method_change_2, inputs=[vbench_team_filter_2, vbench_validate_filter], outputs=data_component_2)
|
| 763 |
-
vbench_validate_filter.change(fn=on_filter_model_size_method_change_2, inputs=[vbench_team_filter_2, vbench_validate_filter], outputs=data_component_2)
|
| 764 |
-
|
| 765 |
-
with gr.TabItem("Video Quality", elem_id="vbench-tab-table", id=3):
|
| 766 |
-
with gr.Accordion("INSTRUCTION", open=False):
|
| 767 |
-
citation_button = gr.Textbox(
|
| 768 |
-
value=QUALITY_CLAIM_TEXT,
|
| 769 |
-
label="",
|
| 770 |
-
elem_id="quality-button",
|
| 771 |
-
lines=2,
|
| 772 |
-
)
|
| 773 |
-
with gr.Row():
|
| 774 |
-
with gr.Column(scale=1.0):
|
| 775 |
-
# selection for column part:
|
| 776 |
-
|
| 777 |
-
checkbox_group_quality = gr.CheckboxGroup(
|
| 778 |
-
choices=QUALITY_TAB,
|
| 779 |
-
value=QUALITY_TAB,
|
| 780 |
-
label="Evaluation Quality Dimension",
|
| 781 |
-
interactive=True,
|
| 782 |
-
)
|
| 783 |
-
|
| 784 |
-
data_component_quality = gr.components.Dataframe(
|
| 785 |
-
value=get_baseline_df_quality,
|
| 786 |
-
headers=COLUMN_NAMES_QUALITY,
|
| 787 |
-
type="pandas",
|
| 788 |
-
datatype=DATA_TITILE_TYPE,
|
| 789 |
-
interactive=False,
|
| 790 |
-
visible=True,
|
| 791 |
-
)
|
| 792 |
-
|
| 793 |
-
checkbox_group_quality.change(fn=on_filter_model_size_method_change_quality, inputs=[checkbox_group_quality], outputs=data_component_quality)
|
| 794 |
-
|
| 795 |
-
# Table i2v
|
| 796 |
-
with gr.TabItem("VBench-I2V", elem_id="vbench-tab-table", id=4):
|
| 797 |
-
with gr.Accordion("NOTE", open=False):
|
| 798 |
-
i2v_note_button = gr.Textbox(
|
| 799 |
-
value=I2V_CLAIM_TEXT,
|
| 800 |
-
label="",
|
| 801 |
-
elem_id="quality-button",
|
| 802 |
-
lines=3,
|
| 803 |
-
)
|
| 804 |
-
with gr.Row():
|
| 805 |
-
with gr.Column(scale=1.0):
|
| 806 |
-
# selection for column part:
|
| 807 |
-
with gr.Row():
|
| 808 |
-
vbench_team_filter_i2v = gr.Checkbox(
|
| 809 |
-
label="Sampled by VBench Team (Uncheck to view all submissions)",
|
| 810 |
-
value=False,
|
| 811 |
-
interactive=True
|
| 812 |
-
)
|
| 813 |
-
vbench_validate_filter_i2v = gr.Checkbox(
|
| 814 |
-
label="Evaluated by VBench Team (Uncheck to view all submissions)",
|
| 815 |
-
value=False,
|
| 816 |
-
interactive=True
|
| 817 |
-
)
|
| 818 |
-
checkbox_group_i2v = gr.CheckboxGroup(
|
| 819 |
-
choices=I2V_TAB,
|
| 820 |
-
value=I2V_TAB,
|
| 821 |
-
label="Evaluation Quality Dimension",
|
| 822 |
-
interactive=True,
|
| 823 |
-
)
|
| 824 |
-
|
| 825 |
-
data_component_i2v = gr.components.Dataframe(
|
| 826 |
-
value=get_baseline_df_i2v,
|
| 827 |
-
headers=COLUMN_NAMES_I2V,
|
| 828 |
-
type="pandas",
|
| 829 |
-
datatype=I2V_TITILE_TYPE,
|
| 830 |
-
interactive=False,
|
| 831 |
-
visible=True,
|
| 832 |
-
)
|
| 833 |
-
|
| 834 |
-
checkbox_group_i2v.change(fn=on_filter_model_size_method_change_i2v, inputs=[checkbox_group_i2v, vbench_team_filter_i2v,vbench_validate_filter_i2v], outputs=data_component_i2v)
|
| 835 |
-
vbench_team_filter_i2v.change(fn=on_filter_model_size_method_change_i2v, inputs=[checkbox_group_i2v, vbench_team_filter_i2v,vbench_validate_filter_i2v], outputs=data_component_i2v)
|
| 836 |
-
vbench_validate_filter_i2v.change(fn=on_filter_model_size_method_change_i2v, inputs=[checkbox_group_i2v, vbench_team_filter_i2v,vbench_validate_filter_i2v], outputs=data_component_i2v)
|
| 837 |
-
|
| 838 |
-
with gr.TabItem("📊 VBench-Long", elem_id="vbench-tab-table", id=5):
|
| 839 |
-
with gr.Row():
|
| 840 |
-
with gr.Accordion("INSTRUCTION", open=False):
|
| 841 |
-
citation_button = gr.Textbox(
|
| 842 |
-
value=LONG_CLAIM_TEXT,
|
| 843 |
-
label="",
|
| 844 |
-
elem_id="long-ins-button",
|
| 845 |
-
lines=2,
|
| 846 |
-
)
|
| 847 |
-
|
| 848 |
-
gr.Markdown(
|
| 849 |
-
TABLE_INTRODUCTION
|
| 850 |
-
)
|
| 851 |
-
with gr.Row():
|
| 852 |
-
with gr.Column(scale=0.2):
|
| 853 |
-
choosen_q_long = gr.Button("Select Quality Dimensions")
|
| 854 |
-
choosen_s_long = gr.Button("Select Semantic Dimensions")
|
| 855 |
-
enable_b_long = gr.Button("Select All")
|
| 856 |
-
disable_b_long = gr.Button("Deselect All")
|
| 857 |
-
|
| 858 |
-
with gr.Column(scale=0.8):
|
| 859 |
-
with gr.Row():
|
| 860 |
-
vbench_team_filter_long = gr.Checkbox(
|
| 861 |
-
label="Sampled by VBench Team (Uncheck to view all submissions)",
|
| 862 |
-
value=False,
|
| 863 |
-
interactive=True
|
| 864 |
-
)
|
| 865 |
-
vbench_validate_filter_long = gr.Checkbox(
|
| 866 |
-
label="Evaluated by VBench Team (Uncheck to view all submissions)",
|
| 867 |
-
value=False,
|
| 868 |
-
interactive=True
|
| 869 |
-
)
|
| 870 |
-
checkbox_group_long = gr.CheckboxGroup(
|
| 871 |
-
choices=TASK_INFO,
|
| 872 |
-
value=DEFAULT_INFO,
|
| 873 |
-
label="Evaluation Dimension",
|
| 874 |
-
interactive=True,
|
| 875 |
-
)
|
| 876 |
-
|
| 877 |
-
data_component = gr.components.Dataframe(
|
| 878 |
-
value=get_baseline_df_long,
|
| 879 |
-
headers=COLUMN_NAMES,
|
| 880 |
-
type="pandas",
|
| 881 |
-
datatype=DATA_TITILE_TYPE,
|
| 882 |
-
interactive=False,
|
| 883 |
-
visible=True,
|
| 884 |
-
height=700,
|
| 885 |
-
)
|
| 886 |
-
|
| 887 |
-
choosen_q_long.click(choose_all_quailty, inputs=None, outputs=[checkbox_group_long]).then(fn=on_filter_model_size_method_change_long, inputs=[ checkbox_group_long, vbench_team_filter_long, vbench_validate_filter_long], outputs=data_component)
|
| 888 |
-
choosen_s_long.click(choose_all_semantic, inputs=None, outputs=[checkbox_group_long]).then(fn=on_filter_model_size_method_change_long, inputs=[ checkbox_group_long, vbench_team_filter_long, vbench_validate_filter_long], outputs=data_component)
|
| 889 |
-
enable_b_long.click(enable_all, inputs=None, outputs=[checkbox_group_long]).then(fn=on_filter_model_size_method_change_long, inputs=[ checkbox_group_long, vbench_team_filter_long, vbench_validate_filter_long], outputs=data_component)
|
| 890 |
-
disable_b_long.click(disable_all, inputs=None, outputs=[checkbox_group_long]).then(fn=on_filter_model_size_method_change_long, inputs=[ checkbox_group_long, vbench_team_filter_long, vbench_validate_filter_long], outputs=data_component)
|
| 891 |
-
checkbox_group_long.change(fn=on_filter_model_size_method_change_long, inputs=[checkbox_group_long, vbench_team_filter_long,vbench_validate_filter_long], outputs=data_component)
|
| 892 |
-
vbench_team_filter_long.change(fn=on_filter_model_size_method_change_long, inputs=[checkbox_group_long, vbench_team_filter_long,vbench_validate_filter_long], outputs=data_component)
|
| 893 |
-
vbench_validate_filter_long.change(fn=on_filter_model_size_method_change_long, inputs=[checkbox_group_long, vbench_team_filter_long,vbench_validate_filter_long], outputs=data_component)
|
| 894 |
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
|
| 898 |
-
|
| 899 |
-
|
| 900 |
-
with gr.TabItem("🚀 [T2V]Submit here! ", elem_id="mvbench-tab-table", id=7):
|
| 901 |
-
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")
|
| 902 |
-
|
| 903 |
-
with gr.Row():
|
| 904 |
-
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
|
| 905 |
|
| 906 |
-
|
| 907 |
-
|
|
|
|
| 908 |
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
with gr.Row():
|
| 912 |
-
with gr.Column():
|
| 913 |
-
model_name_textbox = gr.Textbox(
|
| 914 |
-
label="Model name", placeholder="Required field"
|
| 915 |
-
)
|
| 916 |
-
revision_name_textbox = gr.Textbox(
|
| 917 |
-
label="Revision Model Name(Optional)", placeholder="If you need to update the previous results, please fill in this line"
|
| 918 |
-
)
|
| 919 |
-
access_type = gr.Dropdown(["Open Source", "Ready to Open Source", "API", "Close"], label="Please select the way user can access your model. You can update the content by revision_name, or contact the VBench Team.")
|
| 920 |
|
| 921 |
-
|
| 922 |
-
model_link = gr.Textbox(
|
| 923 |
-
label="Project Page/Paper Link/Github/HuggingFace Repo", placeholder="Required field. If filling in the wrong information, your results may be removed."
|
| 924 |
-
)
|
| 925 |
-
team_name = gr.Textbox(
|
| 926 |
-
label="Your Team Name(If left blank, it will be user upload)", placeholder="User Upload"
|
| 927 |
-
)
|
| 928 |
-
contact_email = gr.Textbox(
|
| 929 |
-
label="E-Mail(Will not be displayed)", placeholder="Required field"
|
| 930 |
-
)
|
| 931 |
-
with gr.Row():
|
| 932 |
-
gr.Markdown("The following is optional and will be synced to [GitHub] (https://github.com/Vchitect/VBench/tree/master/sampled_videos#what-are-the-details-of-the-video-generation-models)", elem_classes="markdown-text")
|
| 933 |
-
with gr.Row():
|
| 934 |
-
release_time = gr.Textbox(label="Time of Publish", placeholder="1970-01-01")
|
| 935 |
-
model_resolution = gr.Textbox(label="resolution", placeholder="Width x Height")
|
| 936 |
-
model_fps = gr.Textbox(label="model fps", placeholder="FPS(int)")
|
| 937 |
-
model_frame = gr.Textbox(label="model frame count", placeholder="INT")
|
| 938 |
-
model_video_length = gr.Textbox(label="model video length", placeholder="float(2.0)")
|
| 939 |
-
model_checkpoint = gr.Textbox(label="model checkpoint", placeholder="optional")
|
| 940 |
-
model_commit_id = gr.Textbox(label="github commit id", placeholder='main')
|
| 941 |
-
model_video_format = gr.Textbox(label="pipeline format", placeholder='mp4')
|
| 942 |
with gr.Column():
|
| 943 |
-
|
| 944 |
-
|
| 945 |
-
submit_succ_button = gr.Markdown("Submit Success! Please press refresh and return to LeaderBoard!", visible=False)
|
| 946 |
-
fail_textbox = gr.Markdown('<span style="color:red;">Please ensure that the `Model Name`, `Project Page`, and `Email` are filled in correctly.</span>', elem_classes="markdown-text",visible=False)
|
| 947 |
-
|
| 948 |
-
|
| 949 |
-
submission_result = gr.Markdown()
|
| 950 |
-
submit_button.click(
|
| 951 |
-
add_new_eval,
|
| 952 |
-
inputs = [
|
| 953 |
-
input_file,
|
| 954 |
-
model_name_textbox,
|
| 955 |
-
revision_name_textbox,
|
| 956 |
-
model_link,
|
| 957 |
-
team_name,
|
| 958 |
-
contact_email,
|
| 959 |
-
release_time,
|
| 960 |
-
access_type,
|
| 961 |
-
model_resolution,
|
| 962 |
-
model_fps,
|
| 963 |
-
model_frame,
|
| 964 |
-
model_video_length,
|
| 965 |
-
model_checkpoint,
|
| 966 |
-
model_commit_id,
|
| 967 |
-
model_video_format
|
| 968 |
-
],
|
| 969 |
-
outputs=[submit_button, submit_succ_button, fail_textbox]
|
| 970 |
-
)
|
| 971 |
-
|
| 972 |
-
with gr.TabItem("🚀 [I2V]Submit here! ", elem_id="mvbench-i2v-tab-table", id=8):
|
| 973 |
-
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")
|
| 974 |
|
| 975 |
-
|
| 976 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 977 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 978 |
with gr.Row():
|
| 979 |
-
gr.Markdown("# ✉️✨ Submit your
|
| 980 |
|
| 981 |
-
with gr.Row():
|
| 982 |
-
gr.Markdown("Here is a required field", elem_classes="markdown-text")
|
| 983 |
with gr.Row():
|
| 984 |
with gr.Column():
|
| 985 |
-
|
| 986 |
-
|
| 987 |
-
|
| 988 |
-
|
| 989 |
-
label="
|
|
|
|
|
|
|
|
|
|
| 990 |
)
|
| 991 |
-
access_type_i2v = gr.Dropdown(["Open Source", "Ready to Open Source", "API", "Close"], label="Please select the way user can access your model. You can update the content by revision_name, or contact the VBench Team.")
|
| 992 |
-
|
| 993 |
|
| 994 |
with gr.Column():
|
| 995 |
-
|
| 996 |
-
|
| 997 |
-
|
| 998 |
-
|
| 999 |
-
|
|
|
|
| 1000 |
)
|
| 1001 |
-
|
| 1002 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1003 |
)
|
| 1004 |
-
|
| 1005 |
-
|
| 1006 |
-
|
| 1007 |
-
|
| 1008 |
-
|
| 1009 |
-
|
| 1010 |
-
|
| 1011 |
-
|
| 1012 |
-
|
| 1013 |
-
|
| 1014 |
-
|
| 1015 |
-
|
| 1016 |
-
|
| 1017 |
-
|
| 1018 |
-
|
| 1019 |
-
|
| 1020 |
-
|
| 1021 |
-
|
| 1022 |
-
submission_result_i2v = gr.Markdown()
|
| 1023 |
-
submit_button_i2v.click(
|
| 1024 |
-
add_new_eval_i2v,
|
| 1025 |
-
inputs = [
|
| 1026 |
-
input_file_i2v,
|
| 1027 |
-
model_name_textbox_i2v,
|
| 1028 |
-
revision_name_textbox_i2v,
|
| 1029 |
-
model_link_i2v,
|
| 1030 |
-
team_name_i2v,
|
| 1031 |
-
contact_email_i2v,
|
| 1032 |
-
release_time_i2v,
|
| 1033 |
-
access_type_i2v,
|
| 1034 |
-
model_resolution_i2v,
|
| 1035 |
-
model_fps_i2v,
|
| 1036 |
-
model_frame_i2v,
|
| 1037 |
-
model_video_length_i2v,
|
| 1038 |
-
model_checkpoint_i2v,
|
| 1039 |
-
model_commit_id_i2v,
|
| 1040 |
-
model_video_format_i2v
|
| 1041 |
-
],
|
| 1042 |
-
outputs=[submit_button_i2v, submit_succ_button_i2v, fail_textbox_i2v]
|
| 1043 |
-
)
|
| 1044 |
-
|
| 1045 |
-
|
| 1046 |
-
|
| 1047 |
-
def refresh_data():
|
| 1048 |
-
value1 = get_baseline_df()
|
| 1049 |
-
return value1
|
| 1050 |
|
| 1051 |
with gr.Row():
|
| 1052 |
-
|
| 1053 |
-
|
| 1054 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1055 |
|
| 1056 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
| 3 |
import pandas as pd
|
| 4 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 5 |
+
from huggingface_hub import snapshot_download
|
| 6 |
+
|
| 7 |
+
from src.about import (
|
| 8 |
+
CITATION_BUTTON_LABEL,
|
| 9 |
+
CITATION_BUTTON_TEXT,
|
| 10 |
+
EVALUATION_QUEUE_TEXT,
|
| 11 |
+
INTRODUCTION_TEXT,
|
| 12 |
+
LLM_BENCHMARKS_TEXT,
|
| 13 |
+
TITLE,
|
| 14 |
+
)
|
| 15 |
+
from src.display.css_html_js import custom_css
|
| 16 |
+
from src.display.utils import (
|
| 17 |
+
BENCHMARK_COLS,
|
| 18 |
+
COLS,
|
| 19 |
+
EVAL_COLS,
|
| 20 |
+
EVAL_TYPES,
|
| 21 |
+
AutoEvalColumn,
|
| 22 |
+
ModelType,
|
| 23 |
+
fields,
|
| 24 |
+
WeightType,
|
| 25 |
+
Precision
|
| 26 |
+
)
|
| 27 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 28 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 29 |
+
from src.submission.submit import add_new_eval
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def restart_space():
|
| 33 |
+
API.restart_space(repo_id=REPO_ID)
|
| 34 |
+
|
| 35 |
+
### Space initialisation
|
| 36 |
+
try:
|
| 37 |
+
print(EVAL_REQUESTS_PATH)
|
| 38 |
+
snapshot_download(
|
| 39 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 40 |
+
)
|
| 41 |
+
except Exception:
|
| 42 |
+
restart_space()
|
| 43 |
+
try:
|
| 44 |
+
print(EVAL_RESULTS_PATH)
|
| 45 |
+
snapshot_download(
|
| 46 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 47 |
+
)
|
| 48 |
+
except Exception:
|
| 49 |
+
restart_space()
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 53 |
+
|
| 54 |
+
(
|
| 55 |
+
finished_eval_queue_df,
|
| 56 |
+
running_eval_queue_df,
|
| 57 |
+
pending_eval_queue_df,
|
| 58 |
+
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 59 |
+
|
| 60 |
+
def init_leaderboard(dataframe):
|
| 61 |
+
if dataframe is None or dataframe.empty:
|
| 62 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 63 |
+
return Leaderboard(
|
| 64 |
+
value=dataframe,
|
| 65 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
| 66 |
+
select_columns=SelectColumns(
|
| 67 |
+
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
| 68 |
+
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
| 69 |
+
label="Select Columns to Display:",
|
| 70 |
+
),
|
| 71 |
+
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 72 |
+
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
| 73 |
+
filter_columns=[
|
| 74 |
+
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
| 75 |
+
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
| 76 |
+
ColumnFilter(
|
| 77 |
+
AutoEvalColumn.params.name,
|
| 78 |
+
type="slider",
|
| 79 |
+
min=0.01,
|
| 80 |
+
max=150,
|
| 81 |
+
label="Select the number of parameters (B)",
|
| 82 |
+
),
|
| 83 |
+
ColumnFilter(
|
| 84 |
+
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
| 85 |
+
),
|
| 86 |
+
],
|
| 87 |
+
bool_checkboxgroup_label="Hide models",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
interactive=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
+
demo = gr.Blocks(css=custom_css)
|
| 93 |
+
with demo:
|
| 94 |
+
gr.HTML(TITLE)
|
| 95 |
+
gr.Markdown(INTRODUCTION_TEXT)
|
| 96 |
+
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 99 |
+
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 100 |
+
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
| 101 |
|
| 102 |
+
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 103 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
+
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
with gr.Column():
|
| 107 |
+
with gr.Row():
|
| 108 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
+
with gr.Column():
|
| 111 |
+
with gr.Accordion(
|
| 112 |
+
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
| 113 |
+
open=False,
|
| 114 |
+
):
|
| 115 |
+
with gr.Row():
|
| 116 |
+
finished_eval_table = gr.components.Dataframe(
|
| 117 |
+
value=finished_eval_queue_df,
|
| 118 |
+
headers=EVAL_COLS,
|
| 119 |
+
datatype=EVAL_TYPES,
|
| 120 |
+
row_count=5,
|
| 121 |
+
)
|
| 122 |
+
with gr.Accordion(
|
| 123 |
+
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
| 124 |
+
open=False,
|
| 125 |
+
):
|
| 126 |
+
with gr.Row():
|
| 127 |
+
running_eval_table = gr.components.Dataframe(
|
| 128 |
+
value=running_eval_queue_df,
|
| 129 |
+
headers=EVAL_COLS,
|
| 130 |
+
datatype=EVAL_TYPES,
|
| 131 |
+
row_count=5,
|
| 132 |
+
)
|
| 133 |
|
| 134 |
+
with gr.Accordion(
|
| 135 |
+
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
| 136 |
+
open=False,
|
| 137 |
+
):
|
| 138 |
+
with gr.Row():
|
| 139 |
+
pending_eval_table = gr.components.Dataframe(
|
| 140 |
+
value=pending_eval_queue_df,
|
| 141 |
+
headers=EVAL_COLS,
|
| 142 |
+
datatype=EVAL_TYPES,
|
| 143 |
+
row_count=5,
|
| 144 |
+
)
|
| 145 |
with gr.Row():
|
| 146 |
+
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
| 147 |
|
|
|
|
|
|
|
| 148 |
with gr.Row():
|
| 149 |
with gr.Column():
|
| 150 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
| 151 |
+
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
| 152 |
+
model_type = gr.Dropdown(
|
| 153 |
+
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
| 154 |
+
label="Model type",
|
| 155 |
+
multiselect=False,
|
| 156 |
+
value=None,
|
| 157 |
+
interactive=True,
|
| 158 |
)
|
|
|
|
|
|
|
| 159 |
|
| 160 |
with gr.Column():
|
| 161 |
+
precision = gr.Dropdown(
|
| 162 |
+
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
| 163 |
+
label="Precision",
|
| 164 |
+
multiselect=False,
|
| 165 |
+
value="float16",
|
| 166 |
+
interactive=True,
|
| 167 |
)
|
| 168 |
+
weight_type = gr.Dropdown(
|
| 169 |
+
choices=[i.value.name for i in WeightType],
|
| 170 |
+
label="Weights type",
|
| 171 |
+
multiselect=False,
|
| 172 |
+
value="Original",
|
| 173 |
+
interactive=True,
|
| 174 |
)
|
| 175 |
+
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 176 |
+
|
| 177 |
+
submit_button = gr.Button("Submit Eval")
|
| 178 |
+
submission_result = gr.Markdown()
|
| 179 |
+
submit_button.click(
|
| 180 |
+
add_new_eval,
|
| 181 |
+
[
|
| 182 |
+
model_name_textbox,
|
| 183 |
+
base_model_name_textbox,
|
| 184 |
+
revision_name_textbox,
|
| 185 |
+
precision,
|
| 186 |
+
weight_type,
|
| 187 |
+
model_type,
|
| 188 |
+
],
|
| 189 |
+
submission_result,
|
| 190 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
with gr.Row():
|
| 193 |
+
with gr.Accordion("📙 Citation", open=False):
|
| 194 |
+
citation_button = gr.Textbox(
|
| 195 |
+
value=CITATION_BUTTON_TEXT,
|
| 196 |
+
label=CITATION_BUTTON_LABEL,
|
| 197 |
+
lines=20,
|
| 198 |
+
elem_id="citation-button",
|
| 199 |
+
show_copy_button=True,
|
| 200 |
+
)
|
| 201 |
|
| 202 |
+
scheduler = BackgroundScheduler()
|
| 203 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 204 |
+
scheduler.start()
|
| 205 |
+
demo.queue(default_concurrency_limit=40).launch()
|