Spaces:
Running
Running
File size: 12,189 Bytes
9deef23 6d761b1 9deef23 b4b5a5e 9deef23 b4b5a5e 9deef23 19997a4 9deef23 064d73b 19997a4 064d73b b0272cf 064d73b 9deef23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import numpy as np
import pandas as pd
from time import time
from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.layers import Input, Embedding, LSTM, Concatenate, TimeDistributed, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.callbacks import EarlyStopping
import warnings
warnings.filterwarnings('ignore')
import pickle
import streamlit as st
from ftlangdetect import detect
import iso639
import streamlit.components.v1 as components
import os
gpt2_tokenizer = None
gpt2_model = None
from transformers import (
# GPT2Config,
# GPT2Tokenizer,
# GPT2Model,
BertTokenizer,
BertModel)
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
bert_tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
bert_model = BertModel.from_pretrained('bert-base-multilingual-uncased')
class_names = {0:'sadness', 1:'joy', 2:'love', 3:'anger', 4:'fear', 5:'surprise'}
import os
gpt2_tokenizer = None
gpt2_model = None
# gpt2_model = GPT2Model.from_pretrained("gpt2")
# gpt2_tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
# gpt2_tokenizer.padding_side = "left"
# gpt2_tokenizer.pad_token = gpt2_tokenizer.eos_token
# Define preprocessing function with smaller max length
def tokenize_sample(texts, tokenizer="bert"):
if tokenizer == "gpt2":
return gpt2_tokenizer(texts, padding="max_length", truncation=True, return_tensors='pt', max_length=128)
return bert_tokenizer(texts, padding=True, truncation=True, return_tensors='pt', max_length=128)
def get_embeddings(text, model_type="bert"):
tokenized_text = tokenize_sample(text, model_type)
if model_type =="gpt2":
outputs = gpt2_model(**tokenized_text)
else:
outputs = bert_model(**tokenized_text)
embeddings = outputs.last_hidden_state[:, 0, :].detach().numpy() # Get the embeddings for [CLS] token
return embeddings
path_to_models = "."
# path_to_models = os.environ['RAILWAY_VOLUME_MOUNT_PATH']+"/storage"
emotion_classifier_map={
"Naive Bayes":f"{path_to_models}/models/naive_bayes_model.sav",
"Logistic Regression":f"{path_to_models}/models/logistic_regression_model.sav",
"KNN":f"{path_to_models}/models/knn_model.sav",
"KMeans":f"{path_to_models}/models/kmeans_model.sav",
"SVM":f"{path_to_models}/models/svm_model.sav",
"Decision Tree":f"{path_to_models}/models/decision_tree_model.sav",
"Random Forest":f"{path_to_models}/models/random_forest_model.sav"
}
summarizer_map={
"Bengali":f"{path_to_models}/models/bengali_summarization_model.sav",
}
# print(os.listdir())
# print(os.environ["RAILWAY_VOLUME_MOUNT_PATH"])
# print(os.listdir(os.environ["RAILWAY_VOLUME_MOUNT_PATH"]+"/storage"))
summarizer_models=dict()
for i in summarizer_map:
with open(summarizer_map[i], 'rb') as file:
summarizer_models[i] = pickle.load(file)
emotion_classfier_models=dict()
for i in emotion_classifier_map:
with open(emotion_classifier_map[i], 'rb') as file:
emotion_classfier_models[i] = pickle.load(file)
def get_emotion_prediction(input, model_name):
if model_name in emotion_classfier_models:
return class_names[emotion_classfier_models[model_name].predict(get_embeddings(input))[0]]
else:
raise ValueError("Model type should be of the types: {}".format(", ".join(list(emotion_classfier_models.keys()))))
def decode_sequence(input_seq, max_summary_len, encoder_model, decoder_model, target_word_index, reverse_target_word_index):
# Encode the input as state vectors.
e_out, e_h, e_c = encoder_model.predict(input_seq)
# Generate empty target sequence of length 1.
target_seq = np.zeros((1,1))
# Populate the first word of target sequence with the start word.
target_seq[0, 0] = target_word_index['sostok']
stop_condition = False
decoded_sentence = ''
while not stop_condition:
output_tokens, h, c = decoder_model.predict([target_seq] + [e_out, e_h, e_c])
# Sample a token
sampled_token_index = np.argmax(output_tokens[0, -1, :])
sampled_token = reverse_target_word_index[sampled_token_index]
if(sampled_token!='eostok'):
decoded_sentence += ' '+sampled_token
# Exit condition: either hit max length or find stop word.
if (sampled_token == 'eostok' or len(decoded_sentence.split()) >= (max_summary_len-1)):
stop_condition = True
# Update the target sequence (of length 1).
target_seq = np.zeros((1,1))
target_seq[0, 0] = sampled_token_index
# Update internal states
e_h, e_c = h, c
return decoded_sentence
def summarize_text(text, x_tokenizer, max_text_len, max_summary_len, encoder_model, decoder_model, target_word_index, reverse_target_word_index):
tokenized_sentence = pad_sequences(x_tokenizer.texts_to_sequences([text]), maxlen=max_text_len, padding='post')[0]
return decode_sequence(tokenized_sentence.reshape(1,max_text_len), max_summary_len, encoder_model, decoder_model, target_word_index, reverse_target_word_index)
def main():
list_of_tabs = st.tabs(["Indic Multilingual Text Summarizer", "Indic Multilingual Emotion Detection"])
# Title of the web app
with list_of_tabs[0]:
st.title('Indic Multilingual Text Summarizer')
# print(os.listdir())
# print(os.environ["RAILWAY_VOLUME_MOUNT_PATH"])
# print(os.listdir(os.environ["RAILWAY_VOLUME_MOUNT_PATH"]))
# Input text from the user
input_sentence_emotion = st.text_area('Enter a sentence', key="summarize")
# Model selection
# model_option = st.selectbox('Select the model', list(models.keys()))
# Result initialization
result = None
error = None
langlist = {"bn": "Bengali"}
# Prediction button
if st.button('Summarize'):
lang = detect(text=input_sentence_emotion, low_memory=False)['lang']
if lang in langlist:
result = summarize_text(input_sentence_emotion, summarizer_models[langlist[lang]]["x_tokenizer"], summarizer_models[langlist[lang]]["max_text_len"],summarizer_models[langlist[lang]]['max_summary_len'], summarizer_models[langlist[lang]]['encoder_model'], summarizer_models[langlist[lang]]['decoder_model'], summarizer_models[langlist[lang]]['target_word_index'], summarizer_models[langlist[lang]]['reverse_target_word_index']).replace("start ", "").replace(" end", "")
else:
error = f"{iso639.Language.from_part1(lang).name} is not supported.\n List of supported languages: {', '.join(langlist.values())}"
st.markdown(f"Current language support: Bengali")
# Display the result
if result:
st.success(f'Summary: {result}')
if error:
st.error(f'Error: {error}')
# Credits
# Credits
with list_of_tabs[1]:
st.title('Indic Multilingual Emotion Detection')
# print(os.listdir())
# print(os.environ["RAILWAY_VOLUME_MOUNT_PATH"])
# print(os.listdir(os.environ["RAILWAY_VOLUME_MOUNT_PATH"]))
# Input text from the user
input_sentence_emotion = st.text_input('Enter a sentence', key="emotion")
# Model selection
model_option = st.selectbox('Select the model', list(emotion_classfier_models.keys()))
# Result initialization
result = None
error = None
langlist = {"hi": "Hindi"}
# Prediction button
if st.button('Predict Emotion'):
lang = detect(text=input_sentence_emotion, low_memory=False)['lang']
if lang in langlist:
result = get_emotion_prediction(input_sentence_emotion, model_option)
else:
error = f"{iso639.Language.from_part1(lang).name} is not supported.\n List of supported languages: {', '.join(langlist.values())}"
st.markdown(f"Current language support: Hindi")
# Display the result
if result:
st.success(f'Prediction: {result}')
if error:
st.error(f'Error: {error}')
# Credits
# Credits
st.markdown("---") # Separator
st.markdown("""## Contributors
- Bishwaraj Paul
**Role** Intern
**Email:** bishwaraj.paul98@gmail.com / bishwaraj.paul@bahash.in
- Dr. Sahinur Rahman Laskar
**Role:** Mentor
Assistant Professor
School of Computer Science, UPES, Dehradun, India
**Email:** sahinurlaskar.nits@gmail.com / sahinur.laskar@ddn.upes.ac.in""")
footer = """<style>
.footer-text{
-webkit-text-size-adjust: 100%;
-webkit-tap-highlight-color: transparent;
--blue: #007bff;
--indigo: #6610f2;
--purple: #6f42c1;
--pink: #e83e8c;
--red: #dc3545;
--orange: #fd7e14;
--yellow: #ffc107;
--green: #28a745;
--teal: #20c997;
--cyan: #17a2b8;
--white: #fff;
--gray: #6c757d;
--gray-dark: #343a40;
--primary: #007bff;
--secondary: #6c757d;
--success: #28a745;
--info: #17a2b8;
--warning: #ffc107;
--danger: #dc3545;
--light: #f8f9fa;
--dark: #343a40;
--breakpoint-xs: 0;
--breakpoint-sm: 576px;
--breakpoint-md: 768px;
--breakpoint-lg: 992px;
--breakpoint-xl: 1200px;
--font-family-sans-serif: -apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol";
--font-family-monospace: SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;
font-size: 16px;
font-weight: 400;
line-height: 24px;
letter-spacing: 1px;
font-family: 'Raleway', sans-serif;
color: #666;
box-sizing: border-box;
text-align: center!important;
}
@media (min-width: 576px) {
.col-sm-12 {
-webkit-box-flex: 0;
-ms-flex: 0 0 100%;
flex: 0 0 100%;
max-width: 100%;
}
}
.row {
display: -webkit-box;
display: -ms-flexbox;
display: flex;
-ms-flex-wrap: wrap;
flex-wrap: wrap;
margin-right: -15px;
margin-left: -15px;
}
@media (min-width: 1200px) {
.container {
max-width: 1140px;
}
}
@media (min-width: 992px) {
.container {
max-width: 960px;
}
}
@media (min-width: 768px) {
.container {
max-width: 720px;
}
}
@media (min-width: 576px) {
.container {
max-width: 540px;
}
}
.container {
width: 100%;
padding-right: 15px;
padding-left: 15px;
margin-right: auto;
margin-left: auto;
}
.footer-bottom-area {
padding: 30px 0;
display: block;
box-sizing: border-box;
}
.footer-bottom-bg {
background: #222;
}
</style>
<footer class="footer-bottom-area footer-bottom-bg">
<div class="container">
<div class="row">
<div class="col-sm-12">
<div class="footer-text">
<p style="color: white; font-style: sans-serif;"><span>Bahash Private Limited</span> ©2024 - All Right Reserved.</p>
</div>
</div>
</div>
</div>
</footer>
"""
components.html(footer)
# Handling query parameters
query = st.query_params
try:
## Look-up the tab from the query
if "tab" in query:
index_tab = query["tab"]
## Click on that tab
js = f"""
<script>
var tab = window.parent.document.getElementById('{index_tab}');
tab.click();
</script>
"""
st.components.v1.html(js)
except ValueError:
## Do nothing if the query parameter does not correspond to any of the tabs
pass
if __name__ == '__main__':
main()
|