sid-dit / app.py
Yinhong Liu
fix
f9b272a
import gradio as gr
import numpy as np
import random
import spaces #[uncomment to use ZeroGPU]
# from diffusers import SanaPipeline, StableDiffusion3Pipeline, FluxPipeline
from sid import SiDFluxPipeline, SiDSD3Pipeline, SiDSanaPipeline
import torch
import os
os.environ["HF_HUB_DISABLE_PROGRESS_BARS"] = "1"
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "1"
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16
MODEL_OPTIONS = {
"SiD-Flow-SD3-medium": "YGu1998/SiD-Flow-SD3-medium",
"SiDA-Flow-SD3-medium": "YGu1998/SiDA-Flow-SD3-medium",
"SiD-Flow-SD3.5-large": "YGu1998/SiD-Flow-SD3.5-large",
"SiDA-Flow-SD3.5-large": "YGu1998/SiDA-Flow-SD3.5-large",
"SiD-Flow-Sana-0.6B-512-res": "YGu1998/SiD-Flow-Sana-0.6B-512-res",
"SiDA-Flow-Sana-0.6B-512-res": "YGu1998/SiDA-Flow-Sana-0.6B-512-res",
"SiD-Flow-Sana-1.6B-512-res": "YGu1998/SiD-Flow-Sana-1.6B-512-res",
"SiDA-Flow-Sana-1.6B-512-res": "YGu1998/SiDA-Flow-Sana-1.6B-512-res",
"SiD-Flow-Sana-Sprint-0.6B-1024-res": "YGu1998/SiD-Flow-Sana-Sprint-0.6B-1024-res",
"SiDA-Flow-Sana-Sprint-0.6B-1024-res": "YGu1998/SiDA-Flow-Sana-Sprint-0.6B-1024-res",
"SiD-Flow-Sana-Sprint-1.6B-1024-res": "YGu1998/SiD-Flow-Sana-Sprint-1.6B-1024-res",
"SiDA-Flow-Sana-Sprint-1.6B-1024-res": "YGu1998/SiDA-Flow-Sana-Sprint-1.6B-1024-res",
"SiD-Flow-Flux-1024-res": "YGu1998/SiD-Flow-Flux-1024-res",
"SiD-Flow-Flux-512-res": "YGu1998/SiD-Flow-Flux-512-res",
}
def load_model(model_choice):
model_repo_id = MODEL_OPTIONS[model_choice]
time_scale = 1000.0
if "Sana" in model_choice:
pipe = SiDSanaPipeline.from_pretrained(model_repo_id, torch_dtype=torch.bfloat16)
if "Sprint" in model_choice:
time_scale = 1.0
elif "SD3" in model_choice:
pipe = SiDSD3Pipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
elif "Flux" in model_choice:
pipe = SiDFluxPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
else:
raise ValueError(f"Unknown model type for: {model_choice}")
pipe = pipe.to(device)
return pipe, time_scale
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
seed,
randomize_seed,
width,
height,
num_inference_steps,
model_choice,
progress=gr.Progress(track_tqdm=False),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
pipe, time_scale = load_model(model_choice)
image = pipe(
prompt=prompt,
guidance_scale=1,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
time_scale=time_scale,
).images[0]
pipe.maybe_free_model_hooks()
del pipe
torch.cuda.empty_cache()
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # SiD-DiT demo")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
model_choice = gr.Dropdown(
label="Model Choice",
choices=list(MODEL_OPTIONS.keys()),
value="SiD-Flow-SD3-medium",
)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
with gr.Row():
# guidance_scale = gr.Slider(
# label="Guidance scale",
# minimum=0.0,
# maximum=10.0,
# step=0.1,
# value=0.0, # Replace with defaults that work for your model
# )
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=4,
step=1,
value=2, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
num_inference_steps,
model_choice,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()