|
|
import gradio as gr |
|
|
import numpy as np |
|
|
import random |
|
|
|
|
|
import spaces |
|
|
|
|
|
from sid import SiDFluxPipeline, SiDSD3Pipeline, SiDSanaPipeline |
|
|
import torch |
|
|
import os |
|
|
os.environ["HF_HUB_DISABLE_PROGRESS_BARS"] = "1" |
|
|
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "1" |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
torch_dtype = torch.float16 |
|
|
|
|
|
MODEL_OPTIONS = { |
|
|
"SiD-Flow-SD3-medium": "YGu1998/SiD-Flow-SD3-medium", |
|
|
"SiDA-Flow-SD3-medium": "YGu1998/SiDA-Flow-SD3-medium", |
|
|
"SiD-Flow-SD3.5-large": "YGu1998/SiD-Flow-SD3.5-large", |
|
|
"SiDA-Flow-SD3.5-large": "YGu1998/SiDA-Flow-SD3.5-large", |
|
|
"SiD-Flow-Sana-0.6B-512-res": "YGu1998/SiD-Flow-Sana-0.6B-512-res", |
|
|
"SiDA-Flow-Sana-0.6B-512-res": "YGu1998/SiDA-Flow-Sana-0.6B-512-res", |
|
|
"SiD-Flow-Sana-1.6B-512-res": "YGu1998/SiD-Flow-Sana-1.6B-512-res", |
|
|
"SiDA-Flow-Sana-1.6B-512-res": "YGu1998/SiDA-Flow-Sana-1.6B-512-res", |
|
|
"SiD-Flow-Sana-Sprint-0.6B-1024-res": "YGu1998/SiD-Flow-Sana-Sprint-0.6B-1024-res", |
|
|
"SiDA-Flow-Sana-Sprint-0.6B-1024-res": "YGu1998/SiDA-Flow-Sana-Sprint-0.6B-1024-res", |
|
|
"SiD-Flow-Sana-Sprint-1.6B-1024-res": "YGu1998/SiD-Flow-Sana-Sprint-1.6B-1024-res", |
|
|
"SiDA-Flow-Sana-Sprint-1.6B-1024-res": "YGu1998/SiDA-Flow-Sana-Sprint-1.6B-1024-res", |
|
|
"SiD-Flow-Flux-1024-res": "YGu1998/SiD-Flow-Flux-1024-res", |
|
|
"SiD-Flow-Flux-512-res": "YGu1998/SiD-Flow-Flux-512-res", |
|
|
} |
|
|
|
|
|
|
|
|
def load_model(model_choice): |
|
|
model_repo_id = MODEL_OPTIONS[model_choice] |
|
|
time_scale = 1000.0 |
|
|
if "Sana" in model_choice: |
|
|
pipe = SiDSanaPipeline.from_pretrained(model_repo_id, torch_dtype=torch.bfloat16) |
|
|
if "Sprint" in model_choice: |
|
|
time_scale = 1.0 |
|
|
elif "SD3" in model_choice: |
|
|
pipe = SiDSD3Pipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) |
|
|
elif "Flux" in model_choice: |
|
|
pipe = SiDFluxPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) |
|
|
else: |
|
|
raise ValueError(f"Unknown model type for: {model_choice}") |
|
|
pipe = pipe.to(device) |
|
|
return pipe, time_scale |
|
|
|
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
|
|
|
|
|
@spaces.GPU |
|
|
def infer( |
|
|
prompt, |
|
|
seed, |
|
|
randomize_seed, |
|
|
width, |
|
|
height, |
|
|
num_inference_steps, |
|
|
model_choice, |
|
|
progress=gr.Progress(track_tqdm=False), |
|
|
): |
|
|
if randomize_seed: |
|
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
|
|
pipe, time_scale = load_model(model_choice) |
|
|
|
|
|
image = pipe( |
|
|
prompt=prompt, |
|
|
guidance_scale=1, |
|
|
num_inference_steps=num_inference_steps, |
|
|
width=width, |
|
|
height=height, |
|
|
generator=generator, |
|
|
time_scale=time_scale, |
|
|
).images[0] |
|
|
|
|
|
pipe.maybe_free_model_hooks() |
|
|
del pipe |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
return image, seed |
|
|
|
|
|
|
|
|
examples = [ |
|
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", |
|
|
"An astronaut riding a green horse", |
|
|
"A delicious ceviche cheesecake slice", |
|
|
] |
|
|
|
|
|
css = """ |
|
|
#col-container { |
|
|
margin: 0 auto; |
|
|
max-width: 640px; |
|
|
} |
|
|
""" |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
with gr.Column(elem_id="col-container"): |
|
|
gr.Markdown(" # SiD-DiT demo") |
|
|
|
|
|
with gr.Row(): |
|
|
prompt = gr.Text( |
|
|
label="Prompt", |
|
|
show_label=False, |
|
|
max_lines=1, |
|
|
placeholder="Enter your prompt", |
|
|
container=False, |
|
|
) |
|
|
|
|
|
run_button = gr.Button("Run", scale=0, variant="primary") |
|
|
|
|
|
model_choice = gr.Dropdown( |
|
|
label="Model Choice", |
|
|
choices=list(MODEL_OPTIONS.keys()), |
|
|
value="SiD-Flow-SD3-medium", |
|
|
) |
|
|
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
|
|
seed = gr.Slider( |
|
|
label="Seed", |
|
|
minimum=0, |
|
|
maximum=MAX_SEED, |
|
|
step=1, |
|
|
value=0, |
|
|
) |
|
|
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
|
|
with gr.Row(): |
|
|
width = gr.Slider( |
|
|
label="Width", |
|
|
minimum=256, |
|
|
maximum=MAX_IMAGE_SIZE, |
|
|
step=32, |
|
|
value=1024, |
|
|
) |
|
|
|
|
|
height = gr.Slider( |
|
|
label="Height", |
|
|
minimum=256, |
|
|
maximum=MAX_IMAGE_SIZE, |
|
|
step=32, |
|
|
value=1024, |
|
|
) |
|
|
|
|
|
with gr.Row(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_inference_steps = gr.Slider( |
|
|
label="Number of inference steps", |
|
|
minimum=1, |
|
|
maximum=4, |
|
|
step=1, |
|
|
value=2, |
|
|
) |
|
|
|
|
|
gr.Examples(examples=examples, inputs=[prompt]) |
|
|
gr.on( |
|
|
triggers=[run_button.click, prompt.submit], |
|
|
fn=infer, |
|
|
inputs=[ |
|
|
prompt, |
|
|
seed, |
|
|
randomize_seed, |
|
|
width, |
|
|
height, |
|
|
num_inference_steps, |
|
|
model_choice, |
|
|
], |
|
|
outputs=[result, seed], |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|