|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import html |
|
|
import inspect |
|
|
import re |
|
|
import urllib.parse as ul |
|
|
import warnings |
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
|
from transformers import Gemma2PreTrainedModel, GemmaTokenizer, GemmaTokenizerFast |
|
|
|
|
|
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback |
|
|
from diffusers.image_processor import PixArtImageProcessor |
|
|
from diffusers.loaders import SanaLoraLoaderMixin |
|
|
from diffusers.models import AutoencoderDC, SanaTransformer2DModel |
|
|
from diffusers.schedulers import DPMSolverMultistepScheduler |
|
|
from diffusers.utils import ( |
|
|
BACKENDS_MAPPING, |
|
|
USE_PEFT_BACKEND, |
|
|
is_bs4_available, |
|
|
is_ftfy_available, |
|
|
is_torch_xla_available, |
|
|
logging, |
|
|
replace_example_docstring, |
|
|
scale_lora_layers, |
|
|
unscale_lora_layers, |
|
|
) |
|
|
from diffusers.utils.torch_utils import get_device, is_torch_version, randn_tensor |
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
|
from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import ( |
|
|
ASPECT_RATIO_512_BIN, |
|
|
ASPECT_RATIO_1024_BIN, |
|
|
) |
|
|
from diffusers.pipelines.pixart_alpha.pipeline_pixart_sigma import ASPECT_RATIO_2048_BIN |
|
|
from .pipeline_output import SiDPipelineOutput |
|
|
|
|
|
|
|
|
if is_torch_xla_available(): |
|
|
import torch_xla.core.xla_model as xm |
|
|
|
|
|
XLA_AVAILABLE = True |
|
|
else: |
|
|
XLA_AVAILABLE = False |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
if is_bs4_available(): |
|
|
from bs4 import BeautifulSoup |
|
|
|
|
|
if is_ftfy_available(): |
|
|
import ftfy |
|
|
|
|
|
|
|
|
ASPECT_RATIO_4096_BIN = { |
|
|
"0.25": [2048.0, 8192.0], |
|
|
"0.26": [2048.0, 7936.0], |
|
|
"0.27": [2048.0, 7680.0], |
|
|
"0.28": [2048.0, 7424.0], |
|
|
"0.32": [2304.0, 7168.0], |
|
|
"0.33": [2304.0, 6912.0], |
|
|
"0.35": [2304.0, 6656.0], |
|
|
"0.4": [2560.0, 6400.0], |
|
|
"0.42": [2560.0, 6144.0], |
|
|
"0.48": [2816.0, 5888.0], |
|
|
"0.5": [2816.0, 5632.0], |
|
|
"0.52": [2816.0, 5376.0], |
|
|
"0.57": [3072.0, 5376.0], |
|
|
"0.6": [3072.0, 5120.0], |
|
|
"0.68": [3328.0, 4864.0], |
|
|
"0.72": [3328.0, 4608.0], |
|
|
"0.78": [3584.0, 4608.0], |
|
|
"0.82": [3584.0, 4352.0], |
|
|
"0.88": [3840.0, 4352.0], |
|
|
"0.94": [3840.0, 4096.0], |
|
|
"1.0": [4096.0, 4096.0], |
|
|
"1.07": [4096.0, 3840.0], |
|
|
"1.13": [4352.0, 3840.0], |
|
|
"1.21": [4352.0, 3584.0], |
|
|
"1.29": [4608.0, 3584.0], |
|
|
"1.38": [4608.0, 3328.0], |
|
|
"1.46": [4864.0, 3328.0], |
|
|
"1.67": [5120.0, 3072.0], |
|
|
"1.75": [5376.0, 3072.0], |
|
|
"2.0": [5632.0, 2816.0], |
|
|
"2.09": [5888.0, 2816.0], |
|
|
"2.4": [6144.0, 2560.0], |
|
|
"2.5": [6400.0, 2560.0], |
|
|
"2.89": [6656.0, 2304.0], |
|
|
"3.0": [6912.0, 2304.0], |
|
|
"3.11": [7168.0, 2304.0], |
|
|
"3.62": [7424.0, 2048.0], |
|
|
"3.75": [7680.0, 2048.0], |
|
|
"3.88": [7936.0, 2048.0], |
|
|
"4.0": [8192.0, 2048.0], |
|
|
} |
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
|
Examples: |
|
|
```py |
|
|
>>> import torch |
|
|
>>> from diffusers import SanaPipeline |
|
|
|
|
|
>>> pipe = SanaPipeline.from_pretrained( |
|
|
... "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers", torch_dtype=torch.float32 |
|
|
... ) |
|
|
>>> pipe.to("cuda") |
|
|
>>> pipe.text_encoder.to(torch.bfloat16) |
|
|
>>> pipe.transformer = pipe.transformer.to(torch.bfloat16) |
|
|
|
|
|
>>> image = pipe(prompt='a cyberpunk cat with a neon sign that says "Sana"')[0] |
|
|
>>> image[0].save("output.png") |
|
|
``` |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
|
scheduler, |
|
|
num_inference_steps: Optional[int] = None, |
|
|
device: Optional[Union[str, torch.device]] = None, |
|
|
timesteps: Optional[List[int]] = None, |
|
|
sigmas: Optional[List[float]] = None, |
|
|
**kwargs, |
|
|
): |
|
|
r""" |
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
|
|
Args: |
|
|
scheduler (`SchedulerMixin`): |
|
|
The scheduler to get timesteps from. |
|
|
num_inference_steps (`int`): |
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
|
must be `None`. |
|
|
device (`str` or `torch.device`, *optional*): |
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
|
timesteps (`List[int]`, *optional*): |
|
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, |
|
|
`num_inference_steps` and `sigmas` must be `None`. |
|
|
sigmas (`List[float]`, *optional*): |
|
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, |
|
|
`num_inference_steps` and `timesteps` must be `None`. |
|
|
|
|
|
Returns: |
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
|
second element is the number of inference steps. |
|
|
""" |
|
|
if timesteps is not None and sigmas is not None: |
|
|
raise ValueError( |
|
|
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" |
|
|
) |
|
|
if timesteps is not None: |
|
|
accepts_timesteps = "timesteps" in set( |
|
|
inspect.signature(scheduler.set_timesteps).parameters.keys() |
|
|
) |
|
|
if not accepts_timesteps: |
|
|
raise ValueError( |
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
|
) |
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
|
timesteps = scheduler.timesteps |
|
|
num_inference_steps = len(timesteps) |
|
|
elif sigmas is not None: |
|
|
accept_sigmas = "sigmas" in set( |
|
|
inspect.signature(scheduler.set_timesteps).parameters.keys() |
|
|
) |
|
|
if not accept_sigmas: |
|
|
raise ValueError( |
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
|
) |
|
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
|
timesteps = scheduler.timesteps |
|
|
num_inference_steps = len(timesteps) |
|
|
else: |
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
|
timesteps = scheduler.timesteps |
|
|
return timesteps, num_inference_steps |
|
|
|
|
|
|
|
|
class SiDSanaPipeline(DiffusionPipeline, SanaLoraLoaderMixin): |
|
|
r""" |
|
|
Pipeline for text-to-image generation using [Sana](https://huggingface.co/papers/2410.10629). |
|
|
""" |
|
|
|
|
|
|
|
|
bad_punct_regex = re.compile(r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}") |
|
|
|
|
|
|
|
|
model_cpu_offload_seq = "text_encoder->transformer->vae" |
|
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
tokenizer: Union[GemmaTokenizer, GemmaTokenizerFast], |
|
|
text_encoder: Gemma2PreTrainedModel, |
|
|
vae: AutoencoderDC, |
|
|
transformer: SanaTransformer2DModel, |
|
|
scheduler: DPMSolverMultistepScheduler, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
self.register_modules( |
|
|
tokenizer=tokenizer, |
|
|
text_encoder=text_encoder, |
|
|
vae=vae, |
|
|
transformer=transformer, |
|
|
scheduler=scheduler, |
|
|
) |
|
|
|
|
|
self.vae_scale_factor = ( |
|
|
2 ** (len(self.vae.config.encoder_block_out_channels) - 1) |
|
|
if hasattr(self, "vae") and self.vae is not None |
|
|
else 32 |
|
|
) |
|
|
self.image_processor = PixArtImageProcessor( |
|
|
vae_scale_factor=self.vae_scale_factor |
|
|
) |
|
|
|
|
|
def enable_vae_slicing(self): |
|
|
r""" |
|
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
|
""" |
|
|
self.vae.enable_slicing() |
|
|
|
|
|
def disable_vae_slicing(self): |
|
|
r""" |
|
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to |
|
|
computing decoding in one step. |
|
|
""" |
|
|
self.vae.disable_slicing() |
|
|
|
|
|
def enable_vae_tiling(self): |
|
|
r""" |
|
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
|
processing larger images. |
|
|
""" |
|
|
self.vae.enable_tiling() |
|
|
|
|
|
def disable_vae_tiling(self): |
|
|
r""" |
|
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to |
|
|
computing decoding in one step. |
|
|
""" |
|
|
self.vae.disable_tiling() |
|
|
|
|
|
def _get_gemma_prompt_embeds( |
|
|
self, |
|
|
prompt: Union[str, List[str]], |
|
|
device: torch.device, |
|
|
dtype: torch.dtype, |
|
|
clean_caption: bool = False, |
|
|
max_sequence_length: int = 300, |
|
|
complex_human_instruction: Optional[List[str]] = None, |
|
|
): |
|
|
r""" |
|
|
Encodes the prompt into text encoder hidden states. |
|
|
|
|
|
Args: |
|
|
prompt (`str` or `List[str]`, *optional*): |
|
|
prompt to be encoded |
|
|
device: (`torch.device`, *optional*): |
|
|
torch device to place the resulting embeddings on |
|
|
clean_caption (`bool`, defaults to `False`): |
|
|
If `True`, the function will preprocess and clean the provided caption before encoding. |
|
|
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt. |
|
|
complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`): |
|
|
If `complex_human_instruction` is not empty, the function will use the complex Human instruction for |
|
|
the prompt. |
|
|
""" |
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
|
|
|
|
if getattr(self, "tokenizer", None) is not None: |
|
|
self.tokenizer.padding_side = "right" |
|
|
|
|
|
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) |
|
|
|
|
|
|
|
|
if not complex_human_instruction: |
|
|
max_length_all = max_sequence_length |
|
|
else: |
|
|
chi_prompt = "\n".join(complex_human_instruction) |
|
|
prompt = [chi_prompt + p for p in prompt] |
|
|
num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt)) |
|
|
max_length_all = num_chi_prompt_tokens + max_sequence_length - 2 |
|
|
|
|
|
text_inputs = self.tokenizer( |
|
|
prompt, |
|
|
padding="max_length", |
|
|
max_length=max_length_all, |
|
|
truncation=True, |
|
|
add_special_tokens=True, |
|
|
return_tensors="pt", |
|
|
) |
|
|
text_input_ids = text_inputs.input_ids |
|
|
|
|
|
prompt_attention_mask = text_inputs.attention_mask |
|
|
prompt_attention_mask = prompt_attention_mask.to(device) |
|
|
|
|
|
prompt_embeds = self.text_encoder( |
|
|
text_input_ids.to(device), attention_mask=prompt_attention_mask |
|
|
) |
|
|
prompt_embeds = prompt_embeds[0].to(dtype=dtype, device=device) |
|
|
|
|
|
return prompt_embeds, prompt_attention_mask |
|
|
|
|
|
def encode_prompt( |
|
|
self, |
|
|
prompt: Union[str, List[str]], |
|
|
do_classifier_free_guidance: bool = True, |
|
|
negative_prompt: str = "", |
|
|
num_images_per_prompt: int = 1, |
|
|
device: Optional[torch.device] = None, |
|
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
|
prompt_attention_mask: Optional[torch.Tensor] = None, |
|
|
negative_prompt_attention_mask: Optional[torch.Tensor] = None, |
|
|
clean_caption: bool = False, |
|
|
max_sequence_length: int = 300, |
|
|
complex_human_instruction: Optional[List[str]] = None, |
|
|
lora_scale: Optional[float] = None, |
|
|
): |
|
|
r""" |
|
|
Encodes the prompt into text encoder hidden states. |
|
|
|
|
|
Args: |
|
|
prompt (`str` or `List[str]`, *optional*): |
|
|
prompt to be encoded |
|
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
|
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` |
|
|
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For |
|
|
PixArt-Alpha, this should be "". |
|
|
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): |
|
|
whether to use classifier free guidance or not |
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
|
number of images that should be generated per prompt |
|
|
device: (`torch.device`, *optional*): |
|
|
torch device to place the resulting embeddings on |
|
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
|
provided, text embeddings will be generated from `prompt` input argument. |
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
|
Pre-generated negative text embeddings. For Sana, it's should be the embeddings of the "" string. |
|
|
clean_caption (`bool`, defaults to `False`): |
|
|
If `True`, the function will preprocess and clean the provided caption before encoding. |
|
|
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt. |
|
|
complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`): |
|
|
If `complex_human_instruction` is not empty, the function will use the complex Human instruction for |
|
|
the prompt. |
|
|
""" |
|
|
|
|
|
if device is None: |
|
|
device = self._execution_device |
|
|
|
|
|
if self.text_encoder is not None: |
|
|
dtype = self.text_encoder.dtype |
|
|
else: |
|
|
dtype = None |
|
|
|
|
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, SanaLoraLoaderMixin): |
|
|
self._lora_scale = lora_scale |
|
|
|
|
|
|
|
|
if self.text_encoder is not None and USE_PEFT_BACKEND: |
|
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
|
batch_size = 1 |
|
|
elif prompt is not None and isinstance(prompt, list): |
|
|
batch_size = len(prompt) |
|
|
else: |
|
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
if getattr(self, "tokenizer", None) is not None: |
|
|
self.tokenizer.padding_side = "right" |
|
|
|
|
|
|
|
|
max_length = max_sequence_length |
|
|
select_index = [0] + list(range(-max_length + 1, 0)) |
|
|
|
|
|
if prompt_embeds is None: |
|
|
prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds( |
|
|
prompt=prompt, |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
clean_caption=clean_caption, |
|
|
max_sequence_length=max_sequence_length, |
|
|
complex_human_instruction=complex_human_instruction, |
|
|
) |
|
|
|
|
|
prompt_embeds = prompt_embeds[:, select_index] |
|
|
prompt_attention_mask = prompt_attention_mask[:, select_index] |
|
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
|
prompt_embeds = prompt_embeds.view( |
|
|
bs_embed * num_images_per_prompt, seq_len, -1 |
|
|
) |
|
|
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1) |
|
|
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) |
|
|
|
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
|
negative_prompt = ( |
|
|
[negative_prompt] * batch_size |
|
|
if isinstance(negative_prompt, str) |
|
|
else negative_prompt |
|
|
) |
|
|
negative_prompt_embeds, negative_prompt_attention_mask = ( |
|
|
self._get_gemma_prompt_embeds( |
|
|
prompt=negative_prompt, |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
clean_caption=clean_caption, |
|
|
max_sequence_length=max_sequence_length, |
|
|
complex_human_instruction=False, |
|
|
) |
|
|
) |
|
|
|
|
|
if do_classifier_free_guidance: |
|
|
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to( |
|
|
dtype=dtype, device=device |
|
|
) |
|
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat( |
|
|
1, num_images_per_prompt, 1 |
|
|
) |
|
|
negative_prompt_embeds = negative_prompt_embeds.view( |
|
|
batch_size * num_images_per_prompt, seq_len, -1 |
|
|
) |
|
|
|
|
|
negative_prompt_attention_mask = negative_prompt_attention_mask.view( |
|
|
bs_embed, -1 |
|
|
) |
|
|
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat( |
|
|
num_images_per_prompt, 1 |
|
|
) |
|
|
else: |
|
|
negative_prompt_embeds = None |
|
|
negative_prompt_attention_mask = None |
|
|
|
|
|
if self.text_encoder is not None: |
|
|
if isinstance(self, SanaLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
|
|
return ( |
|
|
prompt_embeds, |
|
|
prompt_attention_mask, |
|
|
negative_prompt_embeds, |
|
|
negative_prompt_attention_mask, |
|
|
) |
|
|
|
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set( |
|
|
inspect.signature(self.scheduler.step).parameters.keys() |
|
|
) |
|
|
extra_step_kwargs = {} |
|
|
if accepts_eta: |
|
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
|
|
|
accepts_generator = "generator" in set( |
|
|
inspect.signature(self.scheduler.step).parameters.keys() |
|
|
) |
|
|
if accepts_generator: |
|
|
extra_step_kwargs["generator"] = generator |
|
|
return extra_step_kwargs |
|
|
|
|
|
def check_inputs( |
|
|
self, |
|
|
prompt, |
|
|
height, |
|
|
width, |
|
|
callback_on_step_end_tensor_inputs=None, |
|
|
negative_prompt=None, |
|
|
prompt_embeds=None, |
|
|
negative_prompt_embeds=None, |
|
|
prompt_attention_mask=None, |
|
|
negative_prompt_attention_mask=None, |
|
|
): |
|
|
if height % 32 != 0 or width % 32 != 0: |
|
|
raise ValueError( |
|
|
f"`height` and `width` have to be divisible by 32 but are {height} and {width}." |
|
|
) |
|
|
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
|
k in self._callback_tensor_inputs |
|
|
for k in callback_on_step_end_tensor_inputs |
|
|
): |
|
|
raise ValueError( |
|
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
|
) |
|
|
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
|
" only forward one of the two." |
|
|
) |
|
|
elif prompt is None and prompt_embeds is None: |
|
|
raise ValueError( |
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
|
) |
|
|
elif prompt is not None and ( |
|
|
not isinstance(prompt, str) and not isinstance(prompt, list) |
|
|
): |
|
|
raise ValueError( |
|
|
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" |
|
|
) |
|
|
|
|
|
if prompt is not None and negative_prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" |
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
|
) |
|
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
|
) |
|
|
|
|
|
if prompt_embeds is not None and prompt_attention_mask is None: |
|
|
raise ValueError( |
|
|
"Must provide `prompt_attention_mask` when specifying `prompt_embeds`." |
|
|
) |
|
|
|
|
|
if ( |
|
|
negative_prompt_embeds is not None |
|
|
and negative_prompt_attention_mask is None |
|
|
): |
|
|
raise ValueError( |
|
|
"Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`." |
|
|
) |
|
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
|
raise ValueError( |
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
|
f" {negative_prompt_embeds.shape}." |
|
|
) |
|
|
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: |
|
|
raise ValueError( |
|
|
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" |
|
|
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" |
|
|
f" {negative_prompt_attention_mask.shape}." |
|
|
) |
|
|
|
|
|
|
|
|
def _text_preprocessing(self, text, clean_caption=False): |
|
|
if clean_caption and not is_bs4_available(): |
|
|
logger.warning( |
|
|
BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`") |
|
|
) |
|
|
logger.warning("Setting `clean_caption` to False...") |
|
|
clean_caption = False |
|
|
|
|
|
if clean_caption and not is_ftfy_available(): |
|
|
logger.warning( |
|
|
BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`") |
|
|
) |
|
|
logger.warning("Setting `clean_caption` to False...") |
|
|
clean_caption = False |
|
|
|
|
|
if not isinstance(text, (tuple, list)): |
|
|
text = [text] |
|
|
|
|
|
def process(text: str): |
|
|
if clean_caption: |
|
|
text = self._clean_caption(text) |
|
|
text = self._clean_caption(text) |
|
|
else: |
|
|
text = text.lower().strip() |
|
|
return text |
|
|
|
|
|
return [process(t) for t in text] |
|
|
|
|
|
|
|
|
def _clean_caption(self, caption): |
|
|
caption = str(caption) |
|
|
caption = ul.unquote_plus(caption) |
|
|
caption = caption.strip().lower() |
|
|
caption = re.sub("<person>", "person", caption) |
|
|
|
|
|
caption = re.sub( |
|
|
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", |
|
|
"", |
|
|
caption, |
|
|
) |
|
|
caption = re.sub( |
|
|
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", |
|
|
"", |
|
|
caption, |
|
|
) |
|
|
|
|
|
caption = BeautifulSoup(caption, features="html.parser").text |
|
|
|
|
|
|
|
|
caption = re.sub(r"@[\w\d]+\b", "", caption) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) |
|
|
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) |
|
|
caption = re.sub(r"[\u3200-\u32ff]+", "", caption) |
|
|
caption = re.sub(r"[\u3300-\u33ff]+", "", caption) |
|
|
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) |
|
|
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) |
|
|
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) |
|
|
|
|
|
|
|
|
|
|
|
caption = re.sub( |
|
|
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", |
|
|
"-", |
|
|
caption, |
|
|
) |
|
|
|
|
|
|
|
|
caption = re.sub(r"[`´«»“”¨]", '"', caption) |
|
|
caption = re.sub(r"[‘’]", "'", caption) |
|
|
|
|
|
|
|
|
caption = re.sub(r""?", "", caption) |
|
|
|
|
|
caption = re.sub(r"&", "", caption) |
|
|
|
|
|
|
|
|
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) |
|
|
|
|
|
|
|
|
caption = re.sub(r"\d:\d\d\s+$", "", caption) |
|
|
|
|
|
|
|
|
caption = re.sub(r"\\n", " ", caption) |
|
|
|
|
|
|
|
|
caption = re.sub(r"#\d{1,3}\b", "", caption) |
|
|
|
|
|
caption = re.sub(r"#\d{5,}\b", "", caption) |
|
|
|
|
|
caption = re.sub(r"\b\d{6,}\b", "", caption) |
|
|
|
|
|
caption = re.sub( |
|
|
r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption |
|
|
) |
|
|
|
|
|
|
|
|
caption = re.sub(r"[\"\']{2,}", r'"', caption) |
|
|
caption = re.sub(r"[\.]{2,}", r" ", caption) |
|
|
|
|
|
caption = re.sub( |
|
|
self.bad_punct_regex, r" ", caption |
|
|
) |
|
|
caption = re.sub(r"\s+\.\s+", r" ", caption) |
|
|
|
|
|
|
|
|
regex2 = re.compile(r"(?:\-|\_)") |
|
|
if len(re.findall(regex2, caption)) > 3: |
|
|
caption = re.sub(regex2, " ", caption) |
|
|
|
|
|
caption = ftfy.fix_text(caption) |
|
|
caption = html.unescape(html.unescape(caption)) |
|
|
|
|
|
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) |
|
|
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) |
|
|
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) |
|
|
|
|
|
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) |
|
|
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) |
|
|
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) |
|
|
caption = re.sub( |
|
|
r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption |
|
|
) |
|
|
caption = re.sub(r"\bpage\s+\d+\b", "", caption) |
|
|
|
|
|
caption = re.sub( |
|
|
r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption |
|
|
) |
|
|
|
|
|
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) |
|
|
|
|
|
caption = re.sub(r"\b\s+\:\s+", r": ", caption) |
|
|
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) |
|
|
caption = re.sub(r"\s+", " ", caption) |
|
|
|
|
|
caption.strip() |
|
|
|
|
|
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) |
|
|
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) |
|
|
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) |
|
|
caption = re.sub(r"^\.\S+$", "", caption) |
|
|
|
|
|
return caption.strip() |
|
|
|
|
|
def prepare_latents( |
|
|
self, |
|
|
batch_size, |
|
|
num_channels_latents, |
|
|
height, |
|
|
width, |
|
|
dtype, |
|
|
device, |
|
|
generator, |
|
|
latents=None, |
|
|
): |
|
|
if latents is not None: |
|
|
return latents.to(device=device, dtype=dtype) |
|
|
|
|
|
shape = ( |
|
|
batch_size, |
|
|
num_channels_latents, |
|
|
int(height) // self.vae_scale_factor, |
|
|
int(width) // self.vae_scale_factor, |
|
|
) |
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
|
raise ValueError( |
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
|
) |
|
|
|
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
return latents |
|
|
|
|
|
@property |
|
|
def guidance_scale(self): |
|
|
return self._guidance_scale |
|
|
|
|
|
@property |
|
|
def attention_kwargs(self): |
|
|
return self._attention_kwargs |
|
|
|
|
|
@property |
|
|
def do_classifier_free_guidance(self): |
|
|
return self._guidance_scale > 1.0 |
|
|
|
|
|
@property |
|
|
def num_timesteps(self): |
|
|
return self._num_timesteps |
|
|
|
|
|
@property |
|
|
def interrupt(self): |
|
|
return self._interrupt |
|
|
|
|
|
@torch.no_grad() |
|
|
def __call__( |
|
|
self, |
|
|
prompt: Union[str, List[str]] = None, |
|
|
height: Optional[int] = None, |
|
|
width: Optional[int] = None, |
|
|
num_inference_steps: int = 28, |
|
|
guidance_scale: float = 1.0, |
|
|
num_images_per_prompt: Optional[int] = 1, |
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
|
latents: Optional[torch.FloatTensor] = None, |
|
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
prompt_attention_mask: Optional[torch.FloatTensor] = None, |
|
|
output_type: Optional[str] = "pil", |
|
|
return_dict: bool = True, |
|
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
|
max_sequence_length: int = 256, |
|
|
noise_type: str = "fresh", |
|
|
time_scale: float = 1000.0, |
|
|
use_resolution_binning: bool = True, |
|
|
): |
|
|
if use_resolution_binning: |
|
|
if self.transformer.config.sample_size == 128: |
|
|
aspect_ratio_bin = ASPECT_RATIO_4096_BIN |
|
|
elif self.transformer.config.sample_size == 64: |
|
|
aspect_ratio_bin = ASPECT_RATIO_2048_BIN |
|
|
elif self.transformer.config.sample_size == 32: |
|
|
aspect_ratio_bin = ASPECT_RATIO_1024_BIN |
|
|
elif self.transformer.config.sample_size == 16: |
|
|
aspect_ratio_bin = ASPECT_RATIO_512_BIN |
|
|
else: |
|
|
raise ValueError("Invalid sample size") |
|
|
orig_height, orig_width = height, width |
|
|
height, width = self.image_processor.classify_height_width_bin( |
|
|
height, width, ratios=aspect_ratio_bin |
|
|
) |
|
|
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): |
|
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs |
|
|
|
|
|
|
|
|
self.check_inputs( |
|
|
prompt, |
|
|
height, |
|
|
width, |
|
|
prompt_embeds=prompt_embeds, |
|
|
prompt_attention_mask=prompt_attention_mask, |
|
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
|
) |
|
|
|
|
|
self._guidance_scale = guidance_scale |
|
|
self._interrupt = False |
|
|
|
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
|
batch_size = 1 |
|
|
elif prompt is not None and isinstance(prompt, list): |
|
|
batch_size = len(prompt) |
|
|
else: |
|
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
device = self._execution_device |
|
|
|
|
|
( |
|
|
prompt_embeds, |
|
|
prompt_attention_mask, |
|
|
_, |
|
|
_, |
|
|
) = self.encode_prompt( |
|
|
prompt, |
|
|
prompt_embeds=prompt_embeds, |
|
|
prompt_attention_mask=prompt_attention_mask, |
|
|
device=device, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
max_sequence_length=max_sequence_length, |
|
|
) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels |
|
|
latents = self.prepare_latents( |
|
|
batch_size * num_images_per_prompt, |
|
|
num_channels_latents, |
|
|
height, |
|
|
width, |
|
|
prompt_embeds.dtype, |
|
|
device, |
|
|
generator, |
|
|
latents, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
D_x = torch.zeros_like(latents).to(latents.device) |
|
|
|
|
|
initial_latents = latents.clone() |
|
|
for i in range(num_inference_steps): |
|
|
if noise_type == "fresh": |
|
|
noise = ( |
|
|
latents if i == 0 else torch.randn_like(latents).to(latents.device) |
|
|
) |
|
|
elif noise_type == "ddim": |
|
|
noise = ( |
|
|
latents if i == 0 else ((latents - (1.0 - t) * D_x) / t).detach() |
|
|
) |
|
|
elif noise_type == "fixed": |
|
|
noise = initial_latents |
|
|
else: |
|
|
raise ValueError(f"Unknown noise_type: {noise_type}") |
|
|
|
|
|
|
|
|
init_timesteps = 999 |
|
|
scalar_t = float(init_timesteps) * ( |
|
|
1.0 - float(i) / float(num_inference_steps) |
|
|
) |
|
|
t_val = scalar_t / 999.0 |
|
|
t = torch.full( |
|
|
(latents.shape[0],), t_val, device=latents.device, dtype=latents.dtype |
|
|
) |
|
|
t_flattern = t.flatten() |
|
|
if t.numel() > 1: |
|
|
t = t.view(-1, 1, 1, 1) |
|
|
|
|
|
latents = (1.0 - t) * D_x + t * noise |
|
|
latent_model_input = latents |
|
|
|
|
|
flow_pred = self.transformer( |
|
|
hidden_states=latent_model_input, |
|
|
encoder_hidden_states=prompt_embeds, |
|
|
encoder_attention_mask=prompt_attention_mask, |
|
|
timestep=time_scale * t_flattern, |
|
|
return_dict=False, |
|
|
)[0] |
|
|
D_x = latents - ( |
|
|
t * flow_pred |
|
|
if torch.numel(t) == 1 |
|
|
else t.view(-1, 1, 1, 1) * flow_pred |
|
|
) |
|
|
|
|
|
|
|
|
image = self.vae.decode( |
|
|
(D_x / self.vae.config.scaling_factor), |
|
|
return_dict=False, |
|
|
)[0] |
|
|
if use_resolution_binning: |
|
|
image = self.image_processor.resize_and_crop_tensor( |
|
|
image, orig_height, orig_width |
|
|
) |
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
|
|
if not return_dict: |
|
|
return (image,) |
|
|
|
|
|
return SiDPipelineOutput(images=image) |
|
|
|