sid-dit / sid /pipeline_sid_sana.py
Yinhong Liu
flux pipeline
64f514c
# Copyright 2025 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import html
import inspect
import re
import urllib.parse as ul
import warnings
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from transformers import Gemma2PreTrainedModel, GemmaTokenizer, GemmaTokenizerFast
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.image_processor import PixArtImageProcessor
from diffusers.loaders import SanaLoraLoaderMixin
from diffusers.models import AutoencoderDC, SanaTransformer2DModel
from diffusers.schedulers import DPMSolverMultistepScheduler
from diffusers.utils import (
BACKENDS_MAPPING,
USE_PEFT_BACKEND,
is_bs4_available,
is_ftfy_available,
is_torch_xla_available,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.utils.torch_utils import get_device, is_torch_version, randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import (
ASPECT_RATIO_512_BIN,
ASPECT_RATIO_1024_BIN,
)
from diffusers.pipelines.pixart_alpha.pipeline_pixart_sigma import ASPECT_RATIO_2048_BIN
from .pipeline_output import SiDPipelineOutput
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
if is_bs4_available():
from bs4 import BeautifulSoup
if is_ftfy_available():
import ftfy
ASPECT_RATIO_4096_BIN = {
"0.25": [2048.0, 8192.0],
"0.26": [2048.0, 7936.0],
"0.27": [2048.0, 7680.0],
"0.28": [2048.0, 7424.0],
"0.32": [2304.0, 7168.0],
"0.33": [2304.0, 6912.0],
"0.35": [2304.0, 6656.0],
"0.4": [2560.0, 6400.0],
"0.42": [2560.0, 6144.0],
"0.48": [2816.0, 5888.0],
"0.5": [2816.0, 5632.0],
"0.52": [2816.0, 5376.0],
"0.57": [3072.0, 5376.0],
"0.6": [3072.0, 5120.0],
"0.68": [3328.0, 4864.0],
"0.72": [3328.0, 4608.0],
"0.78": [3584.0, 4608.0],
"0.82": [3584.0, 4352.0],
"0.88": [3840.0, 4352.0],
"0.94": [3840.0, 4096.0],
"1.0": [4096.0, 4096.0],
"1.07": [4096.0, 3840.0],
"1.13": [4352.0, 3840.0],
"1.21": [4352.0, 3584.0],
"1.29": [4608.0, 3584.0],
"1.38": [4608.0, 3328.0],
"1.46": [4864.0, 3328.0],
"1.67": [5120.0, 3072.0],
"1.75": [5376.0, 3072.0],
"2.0": [5632.0, 2816.0],
"2.09": [5888.0, 2816.0],
"2.4": [6144.0, 2560.0],
"2.5": [6400.0, 2560.0],
"2.89": [6656.0, 2304.0],
"3.0": [6912.0, 2304.0],
"3.11": [7168.0, 2304.0],
"3.62": [7424.0, 2048.0],
"3.75": [7680.0, 2048.0],
"3.88": [7936.0, 2048.0],
"4.0": [8192.0, 2048.0],
}
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import SanaPipeline
>>> pipe = SanaPipeline.from_pretrained(
... "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers", torch_dtype=torch.float32
... )
>>> pipe.to("cuda")
>>> pipe.text_encoder.to(torch.bfloat16)
>>> pipe.transformer = pipe.transformer.to(torch.bfloat16)
>>> image = pipe(prompt='a cyberpunk cat with a neon sign that says "Sana"')[0]
>>> image[0].save("output.png")
```
"""
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
r"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError(
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
)
if timesteps is not None:
accepts_timesteps = "timesteps" in set(
inspect.signature(scheduler.set_timesteps).parameters.keys()
)
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(
inspect.signature(scheduler.set_timesteps).parameters.keys()
)
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class SiDSanaPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
r"""
Pipeline for text-to-image generation using [Sana](https://huggingface.co/papers/2410.10629).
"""
# fmt: off
bad_punct_regex = re.compile(r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}")
# fmt: on
model_cpu_offload_seq = "text_encoder->transformer->vae"
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
def __init__(
self,
tokenizer: Union[GemmaTokenizer, GemmaTokenizerFast],
text_encoder: Gemma2PreTrainedModel,
vae: AutoencoderDC,
transformer: SanaTransformer2DModel,
scheduler: DPMSolverMultistepScheduler,
):
super().__init__()
self.register_modules(
tokenizer=tokenizer,
text_encoder=text_encoder,
vae=vae,
transformer=transformer,
scheduler=scheduler,
)
self.vae_scale_factor = (
2 ** (len(self.vae.config.encoder_block_out_channels) - 1)
if hasattr(self, "vae") and self.vae is not None
else 32
)
self.image_processor = PixArtImageProcessor(
vae_scale_factor=self.vae_scale_factor
)
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.vae.enable_tiling()
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
def _get_gemma_prompt_embeds(
self,
prompt: Union[str, List[str]],
device: torch.device,
dtype: torch.dtype,
clean_caption: bool = False,
max_sequence_length: int = 300,
complex_human_instruction: Optional[List[str]] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`, *optional*):
torch device to place the resulting embeddings on
clean_caption (`bool`, defaults to `False`):
If `True`, the function will preprocess and clean the provided caption before encoding.
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
the prompt.
"""
prompt = [prompt] if isinstance(prompt, str) else prompt
if getattr(self, "tokenizer", None) is not None:
self.tokenizer.padding_side = "right"
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
# prepare complex human instruction
if not complex_human_instruction:
max_length_all = max_sequence_length
else:
chi_prompt = "\n".join(complex_human_instruction)
prompt = [chi_prompt + p for p in prompt]
num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt))
max_length_all = num_chi_prompt_tokens + max_sequence_length - 2
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_length_all,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_attention_mask = text_inputs.attention_mask
prompt_attention_mask = prompt_attention_mask.to(device)
prompt_embeds = self.text_encoder(
text_input_ids.to(device), attention_mask=prompt_attention_mask
)
prompt_embeds = prompt_embeds[0].to(dtype=dtype, device=device)
return prompt_embeds, prompt_attention_mask
def encode_prompt(
self,
prompt: Union[str, List[str]],
do_classifier_free_guidance: bool = True,
negative_prompt: str = "",
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
clean_caption: bool = False,
max_sequence_length: int = 300,
complex_human_instruction: Optional[List[str]] = None,
lora_scale: Optional[float] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
PixArt-Alpha, this should be "".
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
whether to use classifier free guidance or not
num_images_per_prompt (`int`, *optional*, defaults to 1):
number of images that should be generated per prompt
device: (`torch.device`, *optional*):
torch device to place the resulting embeddings on
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. For Sana, it's should be the embeddings of the "" string.
clean_caption (`bool`, defaults to `False`):
If `True`, the function will preprocess and clean the provided caption before encoding.
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
the prompt.
"""
if device is None:
device = self._execution_device
if self.text_encoder is not None:
dtype = self.text_encoder.dtype
else:
dtype = None
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, SanaLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
if self.text_encoder is not None and USE_PEFT_BACKEND:
scale_lora_layers(self.text_encoder, lora_scale)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if getattr(self, "tokenizer", None) is not None:
self.tokenizer.padding_side = "right"
# See Section 3.1. of the paper.
max_length = max_sequence_length
select_index = [0] + list(range(-max_length + 1, 0))
if prompt_embeds is None:
prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds(
prompt=prompt,
device=device,
dtype=dtype,
clean_caption=clean_caption,
max_sequence_length=max_sequence_length,
complex_human_instruction=complex_human_instruction,
)
prompt_embeds = prompt_embeds[:, select_index]
prompt_attention_mask = prompt_attention_mask[:, select_index]
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(
bs_embed * num_images_per_prompt, seq_len, -1
)
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = (
[negative_prompt] * batch_size
if isinstance(negative_prompt, str)
else negative_prompt
)
negative_prompt_embeds, negative_prompt_attention_mask = (
self._get_gemma_prompt_embeds(
prompt=negative_prompt,
device=device,
dtype=dtype,
clean_caption=clean_caption,
max_sequence_length=max_sequence_length,
complex_human_instruction=False,
)
)
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(
dtype=dtype, device=device
)
negative_prompt_embeds = negative_prompt_embeds.repeat(
1, num_images_per_prompt, 1
)
negative_prompt_embeds = negative_prompt_embeds.view(
batch_size * num_images_per_prompt, seq_len, -1
)
negative_prompt_attention_mask = negative_prompt_attention_mask.view(
bs_embed, -1
)
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(
num_images_per_prompt, 1
)
else:
negative_prompt_embeds = None
negative_prompt_attention_mask = None
if self.text_encoder is not None:
if isinstance(self, SanaLoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
return (
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
height,
width,
callback_on_step_end_tensor_inputs=None,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
prompt_attention_mask=None,
negative_prompt_attention_mask=None,
):
if height % 32 != 0 or width % 32 != 0:
raise ValueError(
f"`height` and `width` have to be divisible by 32 but are {height} and {width}."
)
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs
for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (
not isinstance(prompt, str) and not isinstance(prompt, list)
):
raise ValueError(
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
)
if prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and prompt_attention_mask is None:
raise ValueError(
"Must provide `prompt_attention_mask` when specifying `prompt_embeds`."
)
if (
negative_prompt_embeds is not None
and negative_prompt_attention_mask is None
):
raise ValueError(
"Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
raise ValueError(
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
f" {negative_prompt_attention_mask.shape}."
)
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
def _text_preprocessing(self, text, clean_caption=False):
if clean_caption and not is_bs4_available():
logger.warning(
BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")
)
logger.warning("Setting `clean_caption` to False...")
clean_caption = False
if clean_caption and not is_ftfy_available():
logger.warning(
BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")
)
logger.warning("Setting `clean_caption` to False...")
clean_caption = False
if not isinstance(text, (tuple, list)):
text = [text]
def process(text: str):
if clean_caption:
text = self._clean_caption(text)
text = self._clean_caption(text)
else:
text = text.lower().strip()
return text
return [process(t) for t in text]
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
def _clean_caption(self, caption):
caption = str(caption)
caption = ul.unquote_plus(caption)
caption = caption.strip().lower()
caption = re.sub("<person>", "person", caption)
# urls:
caption = re.sub(
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
caption = re.sub(
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
# html:
caption = BeautifulSoup(caption, features="html.parser").text
# @<nickname>
caption = re.sub(r"@[\w\d]+\b", "", caption)
# 31C0—31EF CJK Strokes
# 31F0—31FF Katakana Phonetic Extensions
# 3200—32FF Enclosed CJK Letters and Months
# 3300—33FF CJK Compatibility
# 3400—4DBF CJK Unified Ideographs Extension A
# 4DC0—4DFF Yijing Hexagram Symbols
# 4E00—9FFF CJK Unified Ideographs
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
#######################################################
# все виды тире / all types of dash --> "-"
caption = re.sub(
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
"-",
caption,
)
# кавычки к одному стандарту
caption = re.sub(r"[`´«»“”¨]", '"', caption)
caption = re.sub(r"[‘’]", "'", caption)
# &quot;
caption = re.sub(r"&quot;?", "", caption)
# &amp
caption = re.sub(r"&amp", "", caption)
# ip addresses:
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
# article ids:
caption = re.sub(r"\d:\d\d\s+$", "", caption)
# \n
caption = re.sub(r"\\n", " ", caption)
# "#123"
caption = re.sub(r"#\d{1,3}\b", "", caption)
# "#12345.."
caption = re.sub(r"#\d{5,}\b", "", caption)
# "123456.."
caption = re.sub(r"\b\d{6,}\b", "", caption)
# filenames:
caption = re.sub(
r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption
)
#
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
caption = re.sub(
self.bad_punct_regex, r" ", caption
) # ***AUSVERKAUFT***, #AUSVERKAUFT
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
# this-is-my-cute-cat / this_is_my_cute_cat
regex2 = re.compile(r"(?:\-|\_)")
if len(re.findall(regex2, caption)) > 3:
caption = re.sub(regex2, " ", caption)
caption = ftfy.fix_text(caption)
caption = html.unescape(html.unescape(caption))
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
caption = re.sub(
r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption
)
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
caption = re.sub(
r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption
) # j2d1a2a...
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
caption = re.sub(r"\s+", " ", caption)
caption.strip()
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
caption = re.sub(r"^\.\S+$", "", caption)
return caption.strip()
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
if latents is not None:
return latents.to(device=device, dtype=dtype)
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
return latents
@property
def guidance_scale(self):
return self._guidance_scale
@property
def attention_kwargs(self):
return self._attention_kwargs
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1.0
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
guidance_scale: float = 1.0,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
prompt_attention_mask: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 256,
noise_type: str = "fresh", # 'fresh', 'ddim', 'fixed'
time_scale: float = 1000.0,
use_resolution_binning: bool = True,
):
if use_resolution_binning:
if self.transformer.config.sample_size == 128:
aspect_ratio_bin = ASPECT_RATIO_4096_BIN
elif self.transformer.config.sample_size == 64:
aspect_ratio_bin = ASPECT_RATIO_2048_BIN
elif self.transformer.config.sample_size == 32:
aspect_ratio_bin = ASPECT_RATIO_1024_BIN
elif self.transformer.config.sample_size == 16:
aspect_ratio_bin = ASPECT_RATIO_512_BIN
else:
raise ValueError("Invalid sample size")
orig_height, orig_width = height, width
height, width = self.image_processor.classify_height_width_bin(
height, width, ratios=aspect_ratio_bin
)
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
height,
width,
prompt_embeds=prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
(
prompt_embeds,
prompt_attention_mask,
_,
_,
) = self.encode_prompt(
prompt,
prompt_embeds=prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
)
# 3. Prepare latents
num_channels_latents = self.transformer.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 4. SiD sampling loop
# Initialize D_x
D_x = torch.zeros_like(latents).to(latents.device)
# Use fixed noise for now (can be extended as needed)
initial_latents = latents.clone()
for i in range(num_inference_steps):
if noise_type == "fresh":
noise = (
latents if i == 0 else torch.randn_like(latents).to(latents.device)
)
elif noise_type == "ddim":
noise = (
latents if i == 0 else ((latents - (1.0 - t) * D_x) / t).detach()
)
elif noise_type == "fixed":
noise = initial_latents # Use the initial, unmodified latents
else:
raise ValueError(f"Unknown noise_type: {noise_type}")
# Compute t value, normalized to [0, 1]
init_timesteps = 999
scalar_t = float(init_timesteps) * (
1.0 - float(i) / float(num_inference_steps)
)
t_val = scalar_t / 999.0
t = torch.full(
(latents.shape[0],), t_val, device=latents.device, dtype=latents.dtype
)
t_flattern = t.flatten()
if t.numel() > 1:
t = t.view(-1, 1, 1, 1)
latents = (1.0 - t) * D_x + t * noise
latent_model_input = latents
flow_pred = self.transformer(
hidden_states=latent_model_input,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
timestep=time_scale * t_flattern,
return_dict=False,
)[0]
D_x = latents - (
t * flow_pred
if torch.numel(t) == 1
else t.view(-1, 1, 1, 1) * flow_pred
)
# 5. Decode latent to image
image = self.vae.decode(
(D_x / self.vae.config.scaling_factor),
return_dict=False,
)[0]
if use_resolution_binning:
image = self.image_processor.resize_and_crop_tensor(
image, orig_height, orig_width
)
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return SiDPipelineOutput(images=image)