File size: 19,603 Bytes
570fe25
b115530
a8f4aca
570fe25
 
a8f4aca
ad1c93f
 
b26edd3
 
 
b115530
 
b26edd3
 
 
8a867c6
 
b26edd3
 
 
ad1c93f
b26edd3
 
8a867c6
b26edd3
 
8a867c6
 
 
 
b26edd3
8a867c6
 
 
 
 
b26edd3
8a867c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b26edd3
 
8a867c6
b26edd3
 
 
8a867c6
b26edd3
8a867c6
b26edd3
8a867c6
ad7a56c
b26edd3
 
 
 
 
 
8a867c6
 
ad7a56c
8a867c6
 
b115530
8a867c6
b115530
8a867c6
b115530
8a867c6
 
 
 
 
 
b26edd3
8a867c6
b115530
8a867c6
b115530
8a867c6
 
 
 
 
b26edd3
8a867c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b26edd3
ad7a56c
b115530
8a867c6
 
b115530
 
8a867c6
b115530
8a867c6
 
 
 
 
 
 
b26edd3
8a867c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b115530
8a867c6
 
 
 
b115530
8a867c6
 
 
 
 
 
b26edd3
 
 
 
 
 
 
8a867c6
b26edd3
8a867c6
b26edd3
 
 
8a867c6
b26edd3
b115530
8a867c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b115530
8a867c6
 
 
 
 
 
 
b26edd3
effc76f
 
 
 
 
 
 
 
8a867c6
 
b26edd3
effc76f
 
 
 
 
 
 
 
 
 
 
 
 
 
8a867c6
 
 
effc76f
8a867c6
effc76f
 
 
 
 
 
 
 
b26edd3
8a867c6
 
b26edd3
effc76f
8a867c6
effc76f
b115530
effc76f
 
 
 
 
 
 
 
b26edd3
b115530
b26edd3
effc76f
b26edd3
effc76f
8a867c6
b26edd3
effc76f
8b4d567
 
8a867c6
effc76f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import os
import re
import requests
import uuid
import datetime
import zipfile
import tempfile
import shutil
import secrets
import time
import json
from typing import List, Tuple, Any, Dict, Set, Generator
from urllib.parse import urljoin, urlparse

# Third-party libraries
import gradio as gr
from huggingface_hub import InferenceClient, HfApi, hf_hub_download
from huggingface_hub.utils import HfHubHTTPError
from pypdf import PdfReader
from bs4 import BeautifulSoup
import nltk

# --- CONFIGURATION ---
class Config:
    """Centralized configuration for the Maestro application."""
    HF_MODEL = os.getenv("HF_MODEL", "mistralai/Mixtral-8x7B-Instruct-v0.1")
    HF_TOKEN = os.getenv("HF_TOKEN")
    HF_DATASET_REPO = "Omnibus/tmp" # As specified in the user's script
    MEMORY_MAIN_PATH = "mem-test2/main.json"
    MEMORY_INDEX_PATH = "mem-test2/index.json"
    MEMORY_DATA_PATH = "mem-test2"
    VERBOSE = os.getenv("VERBOSE", "True").lower() == "true"
    MAX_TOKENS_SYNTHESIS = 4096
    MAX_TOKENS_REPORT = 8192
    MAX_TOKENS_CHAT = 2048
    MAX_DATA_CHUNK = 20000 # For processing large text bodies
    REQUESTS_TIMEOUT = 20
    USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36'

# --- PROMPT LIBRARY (Integrated for simplicity) ---
class PromptLibrary:
    """A centralized library of meticulously crafted prompt templates."""
    AGENT_PREFIX = """
You are Maestro, an Expert Information Retrieval and Synthesis Agent. Your operation is governed by these directives:
1. Ethical Safeguard [v2.4]: Refuse to process harmful, illegal, or unethical requests.
2. Temporal Awareness: Use the timestamp {dynamic_timestamp_utc} to evaluate data relevance.
3. Contextual Prioritization: Analyze the user's purpose '{user_purpose}' to weigh data relevance.
"""
    COMPRESS_JSON = """
Task: {task}
Based on the AGENT_PREFIX context and the following data, generate a structured and concise JSON summary.

Input Data Chunk:
---
{history}
---

Existing Knowledge (for context):
---
{knowledge}
---

Instructions:
Compile and categorize the data above into a JSON dictionary string. Extract key information, group related entities, and ensure the output is a single, valid JSON object.
"""
    COMPRESS_REPORT = """
Task: {task}
Based on the AGENT_PREFIX context and the summarized knowledge you have, compile a detailed, exhaustive report (~8000 words).

Summarized Knowledge:
---
{knowledge}
---

Last Chunk of Raw Data (for final context):
---
{history}
---

Instructions:
Synthesize all provided information into a single, comprehensive narrative. Be thorough, detailed, and structure the report with clear headings and sections.
"""
    SAVE_MEMORY = """
Task: {task}
Data:
---
{history}
---
Instructions:
Compile and categorize the data above into a JSON dictionary string. Include ALL text, datapoints, titles, descriptions, and source urls indexed into an easy to search JSON format.
Required keys: "keywords", "title", "description", "content", "url". The "keywords" list should be comprehensive.
"""
    RECALL_MEMORY = """
The user will give you a query and a list of keywords from a database index.
Your duty is to choose the words from the list that are most closely related to the search query.
If no keywords are relevant, return an empty list: [].
Respond only with a single, valid JSON list of strings.

USER QUERY: {prompt}
KEYWORD LIST: {keywords}
"""

# --- UTILITIES ---
def log(message: str) -> None:
    if Config.VERBOSE: print(f"[{datetime.datetime.now(datetime.timezone.utc).isoformat()}] {message}")

# --- CORE APPLICATION ENGINE ---
class MaestroEngine:
    """Handles all data processing, memory management, and LLM interaction."""
    def __init__(self):
        if not Config.HF_TOKEN: raise ValueError("HF_TOKEN environment variable not set!")
        self.client = InferenceClient(model=Config.HF_MODEL, token=Config.HF_TOKEN)
        self.api = HfApi(token=Config.HF_TOKEN)
        try:
            nltk.data.find("tokenizers/punkt")
        except LookupError:
            log("Downloading NLTK 'punkt' tokenizer...")
            nltk.download('punkt', quiet=True)
        log("MaestroEngine initialized.")

    # --- Data Ingestion ---
    def _read_pdf_from_path(self, path: str) -> str:
        try:
            return "\n".join(page.extract_text() or "" for page in PdfReader(path).pages)
        except Exception as e: return f"Error reading PDF {os.path.basename(path)}: {e}"

    def _read_pdf_from_url(self, url: str) -> str:
        try:
            response = requests.get(url, stream=True, timeout=Config.REQUESTS_TIMEOUT)
            response.raise_for_status()
            with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
                tmp_file.write(response.content)
                return self._read_pdf_from_path(tmp_file.name)
        except Exception as e: return f"Failed to download or read PDF from {url}: {e}"
        finally:
            if 'tmp_file' in locals() and os.path.exists(tmp_file.name): os.remove(tmp_file.name)

    def _get_web_text(self, url: str) -> str:
        try:
            response = requests.get(url, headers={'User-Agent': Config.USER_AGENT}, timeout=Config.REQUESTS_TIMEOUT)
            response.raise_for_status()
            return BeautifulSoup(response.content, 'lxml').get_text(separator="\n", strip=True)
        except Exception as e: return f"Failed to fetch URL {url}: {e}"

    def process_data_sources(self, text: str, files: List[str], url: str, pdf_url: str, pdf_batch: str) -> Tuple[str, List[str]]:
        """Orchestrates data ingestion from all provided sources."""
        all_content, errors = [], []
        if text: all_content.append(text)
        if url: all_content.append(self._get_web_text(url))
        if pdf_url: all_content.append(self._read_pdf_from_url(pdf_url))
        if pdf_batch:
            urls = [u.strip() for u in pdf_batch.split(',') if u.strip()]
            for u in urls:
                content = self._read_pdf_from_url(u)
                if content.startswith("Error"): errors.append(content)
                else: all_content.append(content)
        if files:
            for path in files:
                if not path: continue
                filename, ext = os.path.basename(path), os.path.splitext(path)[1].lower()
                if ext == '.pdf': all_content.append(self._read_pdf_from_path(path))
                elif ext == '.txt':
                    with open(path, 'r', encoding='utf-8', errors='ignore') as f: all_content.append(f.read())
                else: errors.append(f"Unsupported file type: {filename}")
        return "\n\n---\n\n".join(all_content), errors

    # --- LLM Interaction ---
    def _run_gpt(self, prompt_template: str, max_tokens: int, **kwargs) -> str:
        """Core LLM call function."""
        system_prompt = PromptLibrary.AGENT_PREFIX.format(
            dynamic_timestamp_utc=datetime.datetime.now(datetime.timezone.utc).isoformat(),
            user_purpose=kwargs.get('task', 'completing a system task.')
        )
        full_prompt = f"<s>[INST] {system_prompt}\n\n{prompt_template.format(**kwargs)} [/INST]"
        log(f"Running GPT. Template: {prompt_template[:50]}...")
        try:
            return self.client.text_generation(full_prompt, max_new_tokens=max_tokens, temperature=0.8, top_p=0.95).strip()
        except Exception as e:
            log(f"LLM Error: {e}")
            return f'{{"error": "LLM call failed", "details": "{e}"}}'

    def _chunk_and_process(self, text: str, prompt_template: str, task: str, max_tokens: int) -> List[str]:
        """Chunks large text and processes each chunk with an LLM."""
        text_len = len(text)
        if text_len == 0: return []
        num_chunks = (text_len + Config.MAX_DATA_CHUNK - 1) // Config.MAX_DATA_CHUNK
        chunk_size = (text_len + num_chunks - 1) // num_chunks
        
        results, knowledge = [], ""
        for i in range(num_chunks):
            chunk = text[i*chunk_size : (i+1)*chunk_size]
            log(f"Processing chunk {i+1}/{num_chunks}...")
            resp = self._run_gpt(prompt_template, max_tokens, task=task, knowledge=knowledge, history=chunk)
            knowledge = resp if len(resp) < 2000 else resp[:2000] # Use response as context for next chunk
            results.append(resp)
        return results

    # --- Synthesis & Reporting Workflow ---
    def synthesis_workflow(self, text: str, task: str, do_summarize: bool, do_report: bool) -> Tuple[str, List[Dict]]:
        """Handles the multi-stage summarization and reporting process."""
        if not text: return "No data to process.", []
        json_summary_objects, final_report = [], ""
        
        if do_summarize or do_report: # Summarization is a prerequisite for reporting
            log("Starting summarization stage...")
            summaries = self._chunk_and_process(text, PromptLibrary.COMPRESS_JSON, task, Config.MAX_TOKENS_SYNTHESIS)
            for s in summaries:
                try: json_summary_objects.append(json.loads(s))
                except json.JSONDecodeError: json_summary_objects.append({"error": "Failed to parse summary JSON", "raw": s})
            log("Summarization stage complete.")

        if do_report:
            log("Starting report generation stage...")
            # Use the collected JSON summaries as knowledge for the final report
            knowledge_for_report = json.dumps(json_summary_objects, indent=2)
            final_report = self._run_gpt(PromptLibrary.COMPRESS_REPORT, Config.MAX_TOKENS_REPORT, task=task, knowledge=knowledge_for_report, history="All data chunks have been summarized.")
            log("Report generation complete.")
            return final_report, json_summary_objects

        return "Summarization complete.", json_summary_objects

    # --- Persistent Memory System ---
    def _hf_download_json(self, repo_path: str, default: Any = []) -> Any:
        try:
            path = hf_hub_download(repo_id=Config.HF_DATASET_REPO, filename=repo_path, repo_type="dataset", token=Config.HF_TOKEN)
            with open(path, 'r') as f: return json.load(f)
        except HfHubHTTPError: return default # File doesn't exist, return default
        except (json.JSONDecodeError, IOError): return default

    def _hf_upload_json(self, data: Any, repo_path: str):
        with tempfile.NamedTemporaryFile(mode='w+', delete=False, suffix=".json") as tmp_file:
            json.dump(data, tmp_file, indent=4)
            tmp_path = tmp_file.name
        self.api.upload_file(path_or_fileobj=tmp_path, path_in_repo=repo_path, repo_id=Config.HF_DATASET_REPO, repo_type="dataset")
        os.remove(tmp_path)
    
    def save_to_memory(self, text: str, task: str) -> List[Dict]:
        """Saves processed text to the Hugging Face Dataset repo."""
        log("Starting memory save process...")
        json_chunks = self._chunk_and_process(text, PromptLibrary.SAVE_MEMORY, task, Config.MAX_TOKENS_SYNTHESIS)
        parsed_chunks, main_file = [], self._hf_download_json(Config.MEMORY_MAIN_PATH)
        
        for i, chunk_str in enumerate(json_chunks):
            try:
                data = json.loads(chunk_str)
                ts = datetime.datetime.now(datetime.timezone.utc)
                filename = f"{ts.strftime('%Y-%m-%d-%H-%M-%S')}-{uuid.uuid4().hex[:8]}.json"
                self._hf_upload_json(data, f"{Config.MEMORY_DATA_PATH}/{filename}")
                main_file.append({"file_name": filename, "keywords": data.get("keywords", []), "description": data.get("description", "")})
                parsed_chunks.append(data)
            except json.JSONDecodeError: log(f"Could not parse memory chunk {i} into JSON.")
        
        self._hf_upload_json(main_file, Config.MEMORY_MAIN_PATH)
        self.update_keyword_index(main_file)
        log("Memory save complete.")
        return parsed_chunks

    def update_keyword_index(self, main_file_content: List[Dict]):
        log("Updating keyword index...")
        keyword_index = {}
        for entry in main_file_content:
            for keyword in entry.get("keywords", []):
                k = keyword.strip().lower()
                if k not in keyword_index: keyword_index[k] = []
                if entry["file_name"] not in keyword_index[k]: keyword_index[k].append(entry["file_name"])
        self._hf_upload_json(keyword_index, Config.MEMORY_INDEX_PATH)
        log("Keyword index updated.")

    def recall_from_memory(self, query: str) -> str:
        log("Recalling from memory...")
        index = self._hf_download_json(Config.MEMORY_INDEX_PATH, default={})
        if not index: return "Memory index is empty or could not be loaded."
        
        relevant_keywords_str = self._run_gpt(PromptLibrary.RECALL_MEMORY, 256, prompt=query, keywords=list(index.keys()))
        try:
            relevant_keywords = json.loads(relevant_keywords_str)
        except json.JSONDecodeError: return "Could not determine relevant keywords from memory."
        
        if not relevant_keywords: return "Found no relevant information in memory for that query."
        
        # Fetch data from relevant files
        matched_files, fetched_data = set(), []
        for k in relevant_keywords:
            for fname in index.get(k.lower().strip(), []): matched_files.add(fname)
        
        for fname in list(matched_files)[:5]: # Limit fetches
            data = self._hf_download_json(f"{Config.MEMORY_DATA_PATH}/{fname}", default={})
            fetched_data.append(data)
            
        return f"Recalled {len(fetched_data)} entries from memory:\n\n{json.dumps(fetched_data, indent=2)}"

# --- GRADIO APPLICATION ---
class GradioApp:
    def __init__(self, engine: MaestroEngine):
        self.engine = engine
        self.app = self._build_ui()

    def _build_ui(self) -> gr.Blocks:
        with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky"), title="Maestro AI Engine") as app:
            session_id = gr.State(lambda: secrets.token_hex(16))
            
            gr.Markdown("# ๐Ÿง  Maestro: AI Data Engine & Synthesis Platform")
            
            with gr.Tabs():
                with gr.TabItem("โš™๏ธ Ingestion & Synthesis"):
                    with gr.Row():
                        with gr.Column(scale=3):
                            task_instructions = gr.Textbox(label="Primary Task / Instructions", placeholder="e.g., 'Summarize the key findings regarding renewable energy adoption'")
                            with gr.Tabs():
                                with gr.TabItem("Text Input"): text_input = gr.Textbox(lines=10)
                                with gr.TabItem("File Upload"): file_upload = gr.File(label="Upload Files (.pdf, .txt)", file_count="multiple", type="filepath")
                                with gr.TabItem("Web URL"): url_input = gr.Textbox(label="URL")
                                with gr.TabItem("PDF URL"): pdf_url_input = gr.Textbox(label="Single PDF URL")
                                with gr.TabItem("Batch PDF URLs"): pdf_batch_input = gr.Textbox(label="Comma-separated PDF URLs", lines=3)
                        with gr.Column(scale=1):
                            gr.Markdown("### Processing Options")
                            summarize_check = gr.Checkbox(label="Create JSON Summary", value=True)
                            report_check = gr.Checkbox(label="Generate Full Report (requires summary)", value=False)
                            memory_check = gr.Checkbox(label="Save to Persistent Memory", value=False)
                            process_button = gr.Button("๐Ÿš€ Process & Synthesize", variant="primary", scale=2)
                    
                    gr.Markdown("### Results")
                    with gr.Row():
                        final_report_output = gr.Markdown(label="Final Report")
                        json_summary_output = gr.JSON(label="JSON Summaries")
                
                with gr.TabItem("๐Ÿ”Ž Memory Recall"):
                    memory_query = gr.Textbox(label="Query Persistent Memory", placeholder="e.g., 'What do we know about market trends in 2024?'")
                    recall_button = gr.Button("Recall", variant="primary")
                    memory_output = gr.Textbox(label="Recalled Information", lines=20, interactive=False)

            # --- CORRECTION PART 1: The event listener now expects 4 outputs ---
            # The output components match the error: [state, textbox, textbox, button]
            # In our code, these are: session_id, final_report_output, json_summary_output, process_button
            process_button.click(
                self._synthesis_workflow, 
                [session_id, task_instructions, text_input, file_upload, url_input, pdf_url_input, pdf_batch_input, summarize_check, report_check, memory_check], 
                [session_id, final_report_output, json_summary_output, process_button]
            )
            recall_button.click(self.engine.recall_from_memory, [memory_query], [memory_output])
        return app

    # --- CORRECTION PART 2: The handler function is now a generator that yields updates ---
    def _synthesis_workflow(self, session, task, text, files, url, pdf_url, pdf_batch, do_sum, do_rep, do_mem):
        log(f"Starting synthesis workflow for session: {session}")
        
        # 1. First yield: Immediately update the UI to show a "processing" state.
        #    This provides a value for all 4 output components.
        yield {
            session_id: session, # The state component doesn't need to be changed
            final_report_output: "โš™๏ธ Processing... Please wait.",
            json_summary_output: None,
            process_button: gr.update(value="Processing...", interactive=False)
        }

        # 2. Perform the actual work
        ingested_text, errors = self.engine.process_data_sources(text, files, url, pdf_url, pdf_batch)
        if errors:
            log(f"Ingestion errors: {errors}")

        if not ingested_text:
            # Final yield (or return) in case of error
            yield {
                session_id: session,
                final_report_output: "## Error\nNo data was successfully ingested. Please check your inputs.",
                json_summary_output: {"errors": errors},
                process_button: gr.update(value="๐Ÿš€ Process & Synthesize", interactive=True)
            }
            return # Stop execution here

        if do_mem:
            self.engine.save_to_memory(ingested_text, task)

        report_result, summaries_result = "Processing was not requested.", None
        if do_sum or do_rep:
            report_result, summaries_result = self.engine.synthesis_workflow(ingested_text, task, do_sum, do_rep)
        
        # 3. Final yield: Return the final results and re-enable the button.
        #    This also provides a value for all 4 output components.
        yield {
            session_id: session,
            final_report_output: report_result,
            json_summary_output: summaries_result,
            process_button: gr.update(value="๐Ÿš€ Process & Synthesize", interactive=True)
        }

    def launch(self): self.app.launch(debug=Config.VERBOSE, share=False)

if __name__ == "__main__ ":
    if not Config.HF_TOKEN:

        print("FATAL: HF_TOKEN environment variable not set.")
    else:
        log("Instantiating Maestro Engine...") 
        engine = MaestroEngine()
        app = GradioApp(engine)
        log("Launching Gradio App...")
        app.launch()