File size: 13,047 Bytes
e03c986 b664155 e03c986 b664155 f5a3825 887690a f5a3825 b664155 e03c986 b664155 e03c986 b664155 82712d4 b664155 887690a 431a182 b664155 887690a b664155 e03c986 b664155 887690a 82712d4 9cdf9d7 887690a b664155 6474f1f b664155 6474f1f e03c986 6474f1f b664155 82712d4 6474f1f e03c986 b664155 9cdf9d7 e03c986 b664155 6474f1f b664155 887690a 3c1e477 82712d4 b664155 82712d4 b664155 6474f1f 82712d4 b664155 6474f1f b664155 6474f1f 351cd3f e03c986 82712d4 cf49283 e03c986 cf49283 887690a e03c986 82712d4 e03c986 82712d4 e03c986 431a182 e03c986 9cdf9d7 e03c986 82712d4 431a182 3b91b34 82712d4 7ac3581 887690a 7ac3581 3b91b34 82712d4 cf49283 82712d4 7ac3581 ea16365 9cdf9d7 ea16365 b664155 6474f1f 887690a b664155 6474f1f b664155 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# deformes4D_engine.py
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
#
# MODIFICATIONS FOR ADUC-SDR:
# Copyright (C) 2025 Carlos Rodrigues dos Santos. All rights reserved.
#
# This file is part of the ADUC-SDR project. It contains the core logic for
# video fragment generation, latent manipulation, and dynamic editing,
# governed by the ADUC orchestrator.
# This component is licensed under the GNU Affero General Public License v3.0.
import os
import time
import imageio
import numpy as np
import torch
import logging
from PIL import Image, ImageOps
from dataclasses import dataclass
import gradio as gr
import subprocess
import gc
from ltx_manager_helpers import ltx_manager_singleton
from gemini_helpers import gemini_singleton
from upscaler_specialist import upscaler_specialist_singleton
from hd_specialist import hd_specialist_singleton
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
logger = logging.getLogger(__name__)
@dataclass
class LatentConditioningItem:
"""Representa uma âncora de condicionamento no espaço latente para a Câmera (Ψ)."""
latent_tensor: torch.Tensor
media_frame_number: int
conditioning_strength: float
class Deformes4DEngine:
"""
Implementa a Câmera (Ψ) e o Destilador (Δ) da arquitetura ADUC-SDR.
Orquestra a geração, pós-produção latente e renderização final dos fragmentos de vídeo.
"""
def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
self.ltx_manager = ltx_manager
self.workspace_dir = workspace_dir
self._vae = None
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
logger.info("Especialista Deformes4D (Executor ADUC-SDR) inicializado.")
@property
def vae(self):
if self._vae is None:
self._vae = self.ltx_manager.workers[0].pipeline.vae
self._vae.to(self.device); self._vae.eval()
return self._vae
# --- MÉTODOS AUXILIARES ---
@torch.no_grad()
def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
tensor = tensor.to(self.device, dtype=self.vae.dtype)
return vae_encode(tensor, self.vae, vae_per_channel_normalize=True)
@torch.no_grad()
def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype)
timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype)
return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)
def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
if image.size != target_resolution:
return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
return image
def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor:
image_np = np.array(pil_image).astype(np.float32) / 255.0
tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
tensor = (tensor * 2.0) - 1.0
return self.pixels_to_latents(tensor)
# --- NÚCLEO DA LÓGICA ADUC-SDR ---
def generate_full_movie(self, keyframes: list, global_prompt: str, storyboard: list,
seconds_per_fragment: float, trim_percent: int,
handler_strength: float, destination_convergence_strength: float,
use_upscaler: bool, use_refiner: bool, use_hd: bool, use_audio: bool,
video_resolution: int, use_continuity_director: bool,
progress: gr.Progress = gr.Progress()):
num_transitions_to_generate = len(keyframes) - 1
TOTAL_STEPS = num_transitions_to_generate + 4
current_step = 0
FPS = 24
FRAMES_PER_LATENT_CHUNK = 8
ECO_LATENT_CHUNKS = 2
total_frames_brutos = self._quantize_to_multiple(int(seconds_per_fragment * FPS), FRAMES_PER_LATENT_CHUNK)
frames_a_podar = self._quantize_to_multiple(int(total_frames_brutos * (trim_percent / 100)), FRAMES_PER_LATENT_CHUNK)
latents_a_podar = frames_a_podar // FRAMES_PER_LATENT_CHUNK
DEJAVU_FRAME_TARGET = frames_a_podar - 1 if frames_a_podar > 0 else 0
DESTINATION_FRAME_TARGET = total_frames_brutos - 1
base_ltx_params = {"guidance_scale": 2.0, "stg_scale": 0.025, "rescaling_scale": 0.15, "num_inference_steps": 20}
keyframe_paths = [item if isinstance(item, str) else item.name for item in keyframes]
story_history = ""
eco_latent_for_next_loop = None
dejavu_latent_for_next_loop = None
raw_latent_fragments = []
# --- ATO I: GERAÇÃO CAUSAL PURA (LOOP DE FRAGMENTOS) ---
for i in range(num_transitions_to_generate):
fragment_index = i + 1
current_step += 1
progress(current_step / TOTAL_STEPS, desc=f"Gerando Fragmento Causal {fragment_index}/{num_transitions_to_generate}")
past_keyframe_path = keyframe_paths[i - 1] if i > 0 else keyframe_paths[i]
start_keyframe_path = keyframe_paths[i]
destination_keyframe_path = keyframe_paths[i + 1]
future_story_prompt = storyboard[i + 1] if (i + 1) < len(storyboard) else "A cena final."
decision = gemini_singleton.get_cinematic_decision(
global_prompt, story_history, past_keyframe_path, start_keyframe_path, destination_keyframe_path,
storyboard[i - 1] if i > 0 else "O início.", storyboard[i], future_story_prompt)
transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
story_history += f"\n- Ato {fragment_index}: {motion_prompt}"
expected_height, expected_width = video_resolution, video_resolution
downscale_factor = 2 / 3
downscaled_height = self._quantize_to_multiple(int(expected_height * downscale_factor), 8)
downscaled_width = self._quantize_to_multiple(int(expected_width * downscale_factor), 8)
target_resolution_tuple = (downscaled_height, downscaled_width)
conditioning_items = []
if eco_latent_for_next_loop is None:
img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0))
else:
conditioning_items.append(LatentConditioningItem(eco_latent_for_next_loop, 0, 1.0))
conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength))
img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength))
current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt}
latents_brutos, _ = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_brutos)
last_trim = latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone()
eco_latent_for_next_loop = last_trim[:, :, :ECO_LATENT_CHUNKS, :, :].clone()
dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone()
latents_video = latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone()
latents_video = latents_video[:, :, 1:, :, :]
if transition_type == "cut":
eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
if use_upscaler:
logger.info(f"fragmento {i+1} original: {latents_video.shape}")
latents_video = self.upscale_latents(latents_video)
logger.info(f"fragmento {i+1} upscaler: {latents_video.shape}")
else:
logger.info("Etapa de upscaler desativada.")
logger.info(f"fragmento {i+1} adinado a lista global")
raw_latent_fragments.append(latents_video)
current_step += 1
progress(current_step / TOTAL_STEPS, desc="Unificação Causal (Concatenação)...")
tensors_on_main_device = [frag.to(self.device) for frag in raw_latent_fragments]
processed_latents = torch.cat(tensors_on_main_device, dim=2)
del raw_latent_fragments, tensors_on_main_device; gc.collect(); torch.cuda.empty_cache()
if use_refiner:
current_step += 1
progress(current_step / TOTAL_STEPS, desc="Polimento Global (Denoise)...")
processed_latents = self.refine_latents(
processed_latents,
motion_prompt="",
guidance_scale=1.0
)
logger.info(f"Polimento global aplicado. Shape: {processed_latents.shape}")
else:
logger.info("Etapa de refinamento desativada.")
if use_audio:
logger.warning("Geração de áudio solicitada, mas está desativada nesta versão do código.")
else:
logger.info("Etapa de sonoplastia desativada.")
final_video_path = os.path.join(self.workspace_dir, f"{base_name}_FINAL.mp4")
final_pixel_tensor = self.latents_to_pixels(final_concatenated_latents)
self.save_video_from_tensor(processed_latents, final_video_path, fps=24)
if use_hd:
current_step += 1
progress(current_step / TOTAL_STEPS, desc="Masterização Final (HD)...")
try:
hd_specialist_singleton.process_video(
input_video_path=intermediate_video_path,
output_video_path=final_video_path,
prompt=global_prompt
)
except Exception as e:
logger.error(f"Falha na masterização HD: {e}. Usando vídeo de qualidade padrão.")
os.rename(intermediate_video_path, final_video_path)
else:
logger.info("Etapa de masterização HD desativada.")
os.rename(intermediate_video_path, final_video_path)
logger.info(f"Processo concluído! Vídeo final salvo em: {final_video_path}")
yield {"final_path": final_video_path}
def refine_latents(self, latents: torch.Tensor, fps: int = 24, denoise_strength: float = 0.35, refine_steps: int = 12, motion_prompt: str = "...", **kwargs) -> torch.Tensor:
logger.info(f"Refinando tensor latente com shape {latents.shape}.")
_, _, num_latent_frames, latent_h, latent_w = latents.shape
video_scale_factor = getattr(self.vae.config, 'temporal_scale_factor', 8)
vae_scale_factor = getattr(self.vae.config, 'spatial_downscale_factor', 8)
pixel_height = latent_h * vae_scale_factor
pixel_width = latent_w * vae_scale_factor
pixel_frames = (num_latent_frames - 1) * video_scale_factor
final_ltx_params = {
"height": pixel_height, "width": pixel_width, "video_total_frames": pixel_frames,
"video_fps": fps, "motion_prompt": motion_prompt, "current_fragment_index": int(time.time()),
"denoise_strength": denoise_strength, "refine_steps": refine_steps,
"guidance_scale": kwargs.get('guidance_scale', 2.0)
}
refined_latents_tensor, _ = self.ltx_manager.refine_latents(latents, **final_ltx_params)
logger.info(f"Retornando tensor latente refinado com shape: {refined_latents_tensor.shape}")
return refined_latents_tensor
def upscale_latents(self, latents: torch.Tensor) -> torch.Tensor:
logger.info(f"Realizando upscale em tensor latente com shape {latents.shape}.")
return upscaler_specialist_singleton.upscale(latents)
def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
kwargs = {
**ltx_params, 'width': target_resolution[1], 'height': target_resolution[0],
'video_total_frames': total_frames_to_generate, 'video_fps': 24,
'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items
}
return self.ltx_manager.generate_latent_fragment(**kwargs)
def _quantize_to_multiple(self, n, m):
if m == 0: return n
quantized = int(round(n / m) * m)
return m if n > 0 and quantized == 0 else quantized |