File size: 10,174 Bytes
9fcad90 b5023f2 f5c99ab b5023f2 f5c99ab 9fcad90 8434eb9 9fcad90 f5c99ab 5137a03 3dce029 5137a03 8434eb9 3dce029 f5c99ab 8434eb9 f5c99ab 3dce029 9fcad90 5137a03 8434eb9 9fcad90 478560e f5c99ab 478560e f5c99ab 478560e 9fcad90 5137a03 9fcad90 5137a03 3dce029 5137a03 3dce029 9fcad90 478560e 3dce029 f5c99ab 8434eb9 3dce029 5137a03 f5c99ab 3dce029 f5c99ab 3dce029 478560e f5c99ab 8434eb9 f5c99ab 9fcad90 3dce029 f5c99ab 8434eb9 f5c99ab 8434eb9 f5c99ab 8434eb9 3dce029 5137a03 8434eb9 3dce029 f5c99ab 3dce029 f5c99ab 3dce029 9fcad90 3dce029 f5c99ab 3dce029 f5c99ab 3dce029 f5c99ab 3dce029 f5c99ab 8434eb9 f5c99ab 9fcad90 f5c99ab 8434eb9 f5c99ab 9fcad90 f5c99ab 9fcad90 f5c99ab 3dce029 9fcad90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
# managers/seedvr_manager.py
# AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
#
# Contato:
# Carlos Rodrigues dos Santos
# carlex22@gmail.com
# Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025
#
# Repositórios e Projetos Relacionados:
# GitHub: https://github.com/carlex22/Aduc-sdr
#
# PENDING PATENT NOTICE: Please see NOTICE.md.
#
# Version: 2.3.0
#
# This file implements the SeedVrManager, which uses the SeedVR model for
# video super-resolution. It is self-contained, automatically cloning its own
# dependencies from the official SeedVR repository.
import torch
import os
import gc
import logging
import sys
import subprocess
from pathlib import Path
from urllib.parse import urlparse
from torch.hub import download_url_to_file
import gradio as gr
import mediapy
from einops import rearrange
# Internalized utility for color correction, ensuring stability.
from tools.tensor_utils import wavelet_reconstruction
logger = logging.getLogger(__name__)
# --- Dependency Management ---
DEPS_DIR = Path("./deps")
SEEDVR_REPO_DIR = DEPS_DIR / "SeedVR"
SEEDVR_REPO_URL = "https://github.com/ByteDance-Seed/SeedVR.git"
def setup_seedvr_dependencies():
"""
Ensures the SeedVR repository is cloned and available in the sys.path.
This function is run once when the module is first imported.
"""
if not SEEDVR_REPO_DIR.exists():
logger.info(f"SeedVR repository not found at '{SEEDVR_REPO_DIR}'. Cloning from GitHub...")
try:
DEPS_DIR.mkdir(exist_ok=True)
# Use --depth 1 for a shallow clone to save space and time
subprocess.run(
["git", "clone", "--depth", "1", SEEDVR_REPO_URL, str(SEEDVR_REPO_DIR)],
check=True, capture_output=True, text=True
)
logger.info("SeedVR repository cloned successfully.")
except subprocess.CalledProcessError as e:
logger.error(f"Failed to clone SeedVR repository. Git stderr: {e.stderr}")
raise RuntimeError("Could not clone the required SeedVR dependency from GitHub.")
else:
logger.info("Found local SeedVR repository.")
# Add the cloned repo to Python's path to allow direct imports
if str(SEEDVR_REPO_DIR.resolve()) not in sys.path:
sys.path.insert(0, str(SEEDVR_REPO_DIR.resolve()))
logger.info(f"Added '{SEEDVR_REPO_DIR.resolve()}' to sys.path.")
# --- Execute dependency setup immediately upon module import ---
setup_seedvr_dependencies()
# --- Now that the path is set, we can safely import from the cloned repo ---
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.config import load_config
from common.seed import set_seed
from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video
from omegaconf import OmegaConf
def _load_file_from_url(url, model_dir='./', file_name=None):
"""Helper function to download files from a URL to a local directory."""
os.makedirs(model_dir, exist_ok=True)
filename = file_name or os.path.basename(urlparse(url).path)
cached_file = os.path.abspath(os.path.join(model_dir, filename))
if not os.path.exists(cached_file):
logger.info(f'Downloading: "{url}" to {cached_file}')
download_url_to_file(url, cached_file, hash_prefix=None, progress=True)
return cached_file
class SeedVrManager:
"""
Manages the SeedVR model for HD Mastering tasks.
"""
def __init__(self, workspace_dir="deformes_workspace"):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.runner = None
self.workspace_dir = workspace_dir
self.is_initialized = False
logger.info("SeedVrManager initialized. Model will be loaded on demand.")
def _download_models(self):
"""Downloads the necessary checkpoints for SeedVR2."""
logger.info("Verifying and downloading SeedVR2 models...")
ckpt_dir = SEEDVR_REPO_DIR / 'ckpts'
ckpt_dir.mkdir(exist_ok=True)
pretrain_model_urls = {
'vae': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth',
'dit_3b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth',
'dit_7b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-7B/resolve/main/seedvr2_ema_7b.pth',
'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt'
}
for key, url in pretrain_model_urls.items():
_load_file_from_url(url=url, model_dir=str(ckpt_dir))
logger.info("SeedVR2 models downloaded successfully.")
def _initialize_runner(self, model_version: str):
"""Loads and configures the SeedVR model on demand based on the selected version."""
if self.runner is not None: return
self._download_models()
logger.info(f"Initializing SeedVR2 {model_version} runner...")
if model_version == '3B':
config_path = SEEDVR_REPO_DIR / 'configs_3b' / 'main.yaml'
checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_3b.pth'
elif model_version == '7B':
config_path = SEEDVR_REPO_DIR / 'configs_7b' / 'main.yaml'
checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_7b.pth'
else:
raise ValueError(f"Unsupported SeedVR model version: {model_version}")
config = load_config(str(config_path))
self.runner = VideoDiffusionInfer(config)
OmegaConf.set_readonly(self.runner.config, False)
self.runner.configure_dit_model(device=self.device, checkpoint=str(checkpoint_path))
self.runner.configure_vae_model()
if hasattr(self.runner.vae, "set_memory_limit"):
self.runner.vae.set_memory_limit(**self.runner.config.vae.memory_limit)
self.is_initialized = True
logger.info(f"Runner for SeedVR2 {model_version} initialized and ready.")
def _unload_runner(self):
"""Removes the runner from VRAM to free resources."""
if self.runner is not None:
del self.runner; self.runner = None
gc.collect(); torch.cuda.empty_cache()
self.is_initialized = False
logger.info("SeedVR2 runner unloaded from VRAM.")
def process_video(self, input_video_path: str, output_video_path: str, prompt: str,
model_version: str = '3B', steps: int = 50, seed: int = 666,
progress: gr.Progress = None) -> str:
"""Applies HD enhancement to a video using the SeedVR logic."""
try:
self._initialize_runner(model_version)
set_seed(seed, same_across_ranks=True)
self.runner.config.diffusion.timesteps.sampling.steps = steps
self.runner.configure_diffusion()
video_tensor = read_video(input_video_path, output_format="TCHW")[0] / 255.0
res_h, res_w = video_tensor.shape[-2:]
video_transform = Compose([
NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False),
Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
DivisibleCrop((16, 16)),
Normalize(0.5, 0.5),
Rearrange("t c h w -> c t h w"),
])
cond_latents = [video_transform(video_tensor.to(self.device))]
input_videos = cond_latents
self.runner.dit.to("cpu")
self.runner.vae.to(self.device)
cond_latents = self.runner.vae_encode(cond_latents)
self.runner.vae.to("cpu"); gc.collect(); torch.cuda.empty_cache()
self.runner.dit.to(self.device)
pos_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'pos_emb.pt'
neg_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'neg_emb.pt'
text_pos_embeds = torch.load(pos_emb_path).to(self.device)
text_neg_embeds = torch.load(neg_emb_path).to(self.device)
text_embeds_dict = {"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]}
noises = [torch.randn_like(latent) for latent in cond_latents]
conditions = [self.runner.get_condition(noise, latent_blur=latent, task="sr") for noise, latent in zip(noises, cond_latents)]
with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
video_tensors = self.runner.inference(noises=noises, conditions=conditions, dit_offload=True, **text_embeds_dict)
self.runner.dit.to("cpu"); gc.collect(); torch.cuda.empty_cache()
self.runner.vae.to(self.device)
samples = self.runner.vae_decode(video_tensors)
final_sample = samples[0]
input_video_sample = input_videos[0]
if final_sample.shape[1] < input_video_sample.shape[1]:
input_video_sample = input_video_sample[:, :final_sample.shape[1]]
final_sample = wavelet_reconstruction(
rearrange(final_sample, "c t h w -> t c h w"),
rearrange(input_video_sample, "c t h w -> t c h w")
)
final_sample = rearrange(final_sample, "t c h w -> t h w c")
final_sample = final_sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
final_sample_np = final_sample.to(torch.uint8).cpu().numpy()
mediapy.write_video(output_video_path, final_sample_np, fps=24)
logger.info(f"HD Mastered video saved to: {output_video_path}")
return output_video_path
finally:
self._unload_runner()
# --- Singleton Instance ---
seedvr_manager_singleton = SeedVrManager() |