File size: 10,174 Bytes
9fcad90
b5023f2
 
f5c99ab
b5023f2
 
 
 
 
 
 
 
 
f5c99ab
9fcad90
8434eb9
9fcad90
 
 
f5c99ab
5137a03
 
3dce029
5137a03
8434eb9
3dce029
 
 
f5c99ab
8434eb9
f5c99ab
 
3dce029
9fcad90
 
 
5137a03
 
8434eb9
 
 
 
 
9fcad90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
478560e
f5c99ab
478560e
 
 
 
f5c99ab
478560e
 
 
9fcad90
5137a03
9fcad90
5137a03
3dce029
5137a03
3dce029
 
 
9fcad90
478560e
3dce029
f5c99ab
 
8434eb9
3dce029
5137a03
f5c99ab
3dce029
f5c99ab
 
3dce029
 
 
478560e
f5c99ab
8434eb9
f5c99ab
 
 
 
 
9fcad90
 
3dce029
 
f5c99ab
 
8434eb9
 
f5c99ab
8434eb9
 
f5c99ab
 
 
8434eb9
3dce029
 
 
5137a03
8434eb9
3dce029
 
 
 
 
 
f5c99ab
3dce029
 
f5c99ab
3dce029
9fcad90
 
3dce029
f5c99ab
3dce029
f5c99ab
 
 
 
3dce029
f5c99ab
3dce029
f5c99ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8434eb9
 
 
 
f5c99ab
 
 
 
 
 
9fcad90
f5c99ab
 
 
 
 
 
 
 
 
8434eb9
f5c99ab
 
 
9fcad90
f5c99ab
 
9fcad90
f5c99ab
 
 
 
 
 
 
3dce029
 
 
9fcad90
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# managers/seedvr_manager.py
# AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR
# Copyright (C) 4 de Agosto de 2025  Carlos Rodrigues dos Santos
#
# Contato:
# Carlos Rodrigues dos Santos
# carlex22@gmail.com
# Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025
#
# Repositórios e Projetos Relacionados:
# GitHub: https://github.com/carlex22/Aduc-sdr
#
# PENDING PATENT NOTICE: Please see NOTICE.md.
#
# Version: 2.3.0
#
# This file implements the SeedVrManager, which uses the SeedVR model for
# video super-resolution. It is self-contained, automatically cloning its own
# dependencies from the official SeedVR repository.

import torch
import os
import gc
import logging
import sys
import subprocess
from pathlib import Path
from urllib.parse import urlparse
from torch.hub import download_url_to_file
import gradio as gr
import mediapy
from einops import rearrange

# Internalized utility for color correction, ensuring stability.
from tools.tensor_utils import wavelet_reconstruction

logger = logging.getLogger(__name__)

# --- Dependency Management ---
DEPS_DIR = Path("./deps")
SEEDVR_REPO_DIR = DEPS_DIR / "SeedVR"
SEEDVR_REPO_URL = "https://github.com/ByteDance-Seed/SeedVR.git"

def setup_seedvr_dependencies():
    """
    Ensures the SeedVR repository is cloned and available in the sys.path.
    This function is run once when the module is first imported.
    """
    if not SEEDVR_REPO_DIR.exists():
        logger.info(f"SeedVR repository not found at '{SEEDVR_REPO_DIR}'. Cloning from GitHub...")
        try:
            DEPS_DIR.mkdir(exist_ok=True)
            # Use --depth 1 for a shallow clone to save space and time
            subprocess.run(
                ["git", "clone", "--depth", "1", SEEDVR_REPO_URL, str(SEEDVR_REPO_DIR)],
                check=True, capture_output=True, text=True
            )
            logger.info("SeedVR repository cloned successfully.")
        except subprocess.CalledProcessError as e:
            logger.error(f"Failed to clone SeedVR repository. Git stderr: {e.stderr}")
            raise RuntimeError("Could not clone the required SeedVR dependency from GitHub.")
    else:
        logger.info("Found local SeedVR repository.")
    
    # Add the cloned repo to Python's path to allow direct imports
    if str(SEEDVR_REPO_DIR.resolve()) not in sys.path:
        sys.path.insert(0, str(SEEDVR_REPO_DIR.resolve()))
        logger.info(f"Added '{SEEDVR_REPO_DIR.resolve()}' to sys.path.")

# --- Execute dependency setup immediately upon module import ---
setup_seedvr_dependencies()

# --- Now that the path is set, we can safely import from the cloned repo ---
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.config import load_config
from common.seed import set_seed
from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video
from omegaconf import OmegaConf


def _load_file_from_url(url, model_dir='./', file_name=None):
    """Helper function to download files from a URL to a local directory."""
    os.makedirs(model_dir, exist_ok=True)
    filename = file_name or os.path.basename(urlparse(url).path)
    cached_file = os.path.abspath(os.path.join(model_dir, filename))
    if not os.path.exists(cached_file):
        logger.info(f'Downloading: "{url}" to {cached_file}')
        download_url_to_file(url, cached_file, hash_prefix=None, progress=True)
    return cached_file

class SeedVrManager:
    """
    Manages the SeedVR model for HD Mastering tasks.
    """
    def __init__(self, workspace_dir="deformes_workspace"):
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.runner = None
        self.workspace_dir = workspace_dir
        self.is_initialized = False
        logger.info("SeedVrManager initialized. Model will be loaded on demand.")

    def _download_models(self):
        """Downloads the necessary checkpoints for SeedVR2."""
        logger.info("Verifying and downloading SeedVR2 models...")
        ckpt_dir = SEEDVR_REPO_DIR / 'ckpts'
        ckpt_dir.mkdir(exist_ok=True)

        pretrain_model_urls = {
            'vae': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth',
            'dit_3b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth',
            'dit_7b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-7B/resolve/main/seedvr2_ema_7b.pth',
            'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
            'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt'
        }
        
        for key, url in pretrain_model_urls.items():
            _load_file_from_url(url=url, model_dir=str(ckpt_dir))
            
        logger.info("SeedVR2 models downloaded successfully.")

    def _initialize_runner(self, model_version: str):
        """Loads and configures the SeedVR model on demand based on the selected version."""
        if self.runner is not None: return

        self._download_models()

        logger.info(f"Initializing SeedVR2 {model_version} runner...")
        if model_version == '3B':
            config_path = SEEDVR_REPO_DIR / 'configs_3b' / 'main.yaml'
            checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_3b.pth'
        elif model_version == '7B':
            config_path = SEEDVR_REPO_DIR / 'configs_7b' / 'main.yaml'
            checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_7b.pth'
        else:
            raise ValueError(f"Unsupported SeedVR model version: {model_version}")

        config = load_config(str(config_path))
        
        self.runner = VideoDiffusionInfer(config)
        OmegaConf.set_readonly(self.runner.config, False)
        
        self.runner.configure_dit_model(device=self.device, checkpoint=str(checkpoint_path))
        self.runner.configure_vae_model()
        
        if hasattr(self.runner.vae, "set_memory_limit"):
            self.runner.vae.set_memory_limit(**self.runner.config.vae.memory_limit)
        
        self.is_initialized = True
        logger.info(f"Runner for SeedVR2 {model_version} initialized and ready.")

    def _unload_runner(self):
        """Removes the runner from VRAM to free resources."""
        if self.runner is not None:
            del self.runner; self.runner = None
            gc.collect(); torch.cuda.empty_cache()
            self.is_initialized = False
            logger.info("SeedVR2 runner unloaded from VRAM.")

    def process_video(self, input_video_path: str, output_video_path: str, prompt: str,
                      model_version: str = '3B', steps: int = 50, seed: int = 666, 
                      progress: gr.Progress = None) -> str:
        """Applies HD enhancement to a video using the SeedVR logic."""
        try:
            self._initialize_runner(model_version)
            set_seed(seed, same_across_ranks=True)

            self.runner.config.diffusion.timesteps.sampling.steps = steps
            self.runner.configure_diffusion()

            video_tensor = read_video(input_video_path, output_format="TCHW")[0] / 255.0
            res_h, res_w = video_tensor.shape[-2:]
            
            video_transform = Compose([
                NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False),
                Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
                DivisibleCrop((16, 16)),
                Normalize(0.5, 0.5),
                Rearrange("t c h w -> c t h w"),
            ])
            
            cond_latents = [video_transform(video_tensor.to(self.device))]
            input_videos = cond_latents

            self.runner.dit.to("cpu")
            self.runner.vae.to(self.device)
            cond_latents = self.runner.vae_encode(cond_latents)
            self.runner.vae.to("cpu"); gc.collect(); torch.cuda.empty_cache()
            self.runner.dit.to(self.device)

            pos_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'pos_emb.pt'
            neg_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'neg_emb.pt'
            text_pos_embeds = torch.load(pos_emb_path).to(self.device)
            text_neg_embeds = torch.load(neg_emb_path).to(self.device)
            text_embeds_dict = {"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]}

            noises = [torch.randn_like(latent) for latent in cond_latents]
            conditions = [self.runner.get_condition(noise, latent_blur=latent, task="sr") for noise, latent in zip(noises, cond_latents)]

            with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
                video_tensors = self.runner.inference(noises=noises, conditions=conditions, dit_offload=True, **text_embeds_dict)
            
            self.runner.dit.to("cpu"); gc.collect(); torch.cuda.empty_cache()

            self.runner.vae.to(self.device)
            samples = self.runner.vae_decode(video_tensors)
            
            final_sample = samples[0]
            input_video_sample = input_videos[0]

            if final_sample.shape[1] < input_video_sample.shape[1]:
                input_video_sample = input_video_sample[:, :final_sample.shape[1]]

            final_sample = wavelet_reconstruction(
                rearrange(final_sample, "c t h w -> t c h w"), 
                rearrange(input_video_sample, "c t h w -> t c h w")
            )
            
            final_sample = rearrange(final_sample, "t c h w -> t h w c")
            final_sample = final_sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
            final_sample_np = final_sample.to(torch.uint8).cpu().numpy()

            mediapy.write_video(output_video_path, final_sample_np, fps=24)
            logger.info(f"HD Mastered video saved to: {output_video_path}")
            return output_video_path
        finally:
            self._unload_runner()

# --- Singleton Instance ---
seedvr_manager_singleton = SeedVrManager()