|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import os |
|
|
import gc |
|
|
import logging |
|
|
import sys |
|
|
import subprocess |
|
|
from pathlib import Path |
|
|
from urllib.parse import urlparse |
|
|
from torch.hub import download_url_to_file |
|
|
import gradio as gr |
|
|
import mediapy |
|
|
from einops import rearrange |
|
|
|
|
|
|
|
|
from tools.tensor_utils import wavelet_reconstruction |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
DEPS_DIR = Path("./deps") |
|
|
SEEDVR_REPO_DIR = DEPS_DIR / "SeedVR" |
|
|
SEEDVR_REPO_URL = "https://github.com/ByteDance-Seed/SeedVR.git" |
|
|
|
|
|
def setup_seedvr_dependencies(): |
|
|
""" |
|
|
Ensures the SeedVR repository is cloned and available in the sys.path. |
|
|
This function is run once when the module is first imported. |
|
|
""" |
|
|
if not SEEDVR_REPO_DIR.exists(): |
|
|
logger.info(f"SeedVR repository not found at '{SEEDVR_REPO_DIR}'. Cloning from GitHub...") |
|
|
try: |
|
|
DEPS_DIR.mkdir(exist_ok=True) |
|
|
|
|
|
subprocess.run( |
|
|
["git", "clone", "--depth", "1", SEEDVR_REPO_URL, str(SEEDVR_REPO_DIR)], |
|
|
check=True, capture_output=True, text=True |
|
|
) |
|
|
logger.info("SeedVR repository cloned successfully.") |
|
|
except subprocess.CalledProcessError as e: |
|
|
logger.error(f"Failed to clone SeedVR repository. Git stderr: {e.stderr}") |
|
|
raise RuntimeError("Could not clone the required SeedVR dependency from GitHub.") |
|
|
else: |
|
|
logger.info("Found local SeedVR repository.") |
|
|
|
|
|
|
|
|
if str(SEEDVR_REPO_DIR.resolve()) not in sys.path: |
|
|
sys.path.insert(0, str(SEEDVR_REPO_DIR.resolve())) |
|
|
logger.info(f"Added '{SEEDVR_REPO_DIR.resolve()}' to sys.path.") |
|
|
|
|
|
|
|
|
setup_seedvr_dependencies() |
|
|
|
|
|
|
|
|
from projects.video_diffusion_sr.infer import VideoDiffusionInfer |
|
|
from common.config import load_config |
|
|
from common.seed import set_seed |
|
|
from data.image.transforms.divisible_crop import DivisibleCrop |
|
|
from data.image.transforms.na_resize import NaResize |
|
|
from data.video.transforms.rearrange import Rearrange |
|
|
from torchvision.transforms import Compose, Lambda, Normalize |
|
|
from torchvision.io.video import read_video |
|
|
from omegaconf import OmegaConf |
|
|
|
|
|
|
|
|
def _load_file_from_url(url, model_dir='./', file_name=None): |
|
|
"""Helper function to download files from a URL to a local directory.""" |
|
|
os.makedirs(model_dir, exist_ok=True) |
|
|
filename = file_name or os.path.basename(urlparse(url).path) |
|
|
cached_file = os.path.abspath(os.path.join(model_dir, filename)) |
|
|
if not os.path.exists(cached_file): |
|
|
logger.info(f'Downloading: "{url}" to {cached_file}') |
|
|
download_url_to_file(url, cached_file, hash_prefix=None, progress=True) |
|
|
return cached_file |
|
|
|
|
|
class SeedVrManager: |
|
|
""" |
|
|
Manages the SeedVR model for HD Mastering tasks. |
|
|
""" |
|
|
def __init__(self, workspace_dir="deformes_workspace"): |
|
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
self.runner = None |
|
|
self.workspace_dir = workspace_dir |
|
|
self.is_initialized = False |
|
|
logger.info("SeedVrManager initialized. Model will be loaded on demand.") |
|
|
|
|
|
def _download_models(self): |
|
|
"""Downloads the necessary checkpoints for SeedVR2.""" |
|
|
logger.info("Verifying and downloading SeedVR2 models...") |
|
|
ckpt_dir = SEEDVR_REPO_DIR / 'ckpts' |
|
|
ckpt_dir.mkdir(exist_ok=True) |
|
|
|
|
|
pretrain_model_urls = { |
|
|
'vae': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth', |
|
|
'dit_3b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth', |
|
|
'dit_7b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-7B/resolve/main/seedvr2_ema_7b.pth', |
|
|
'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt', |
|
|
'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt' |
|
|
} |
|
|
|
|
|
for key, url in pretrain_model_urls.items(): |
|
|
_load_file_from_url(url=url, model_dir=str(ckpt_dir)) |
|
|
|
|
|
logger.info("SeedVR2 models downloaded successfully.") |
|
|
|
|
|
def _initialize_runner(self, model_version: str): |
|
|
"""Loads and configures the SeedVR model on demand based on the selected version.""" |
|
|
if self.runner is not None: return |
|
|
|
|
|
self._download_models() |
|
|
|
|
|
logger.info(f"Initializing SeedVR2 {model_version} runner...") |
|
|
if model_version == '3B': |
|
|
config_path = SEEDVR_REPO_DIR / 'configs_3b' / 'main.yaml' |
|
|
checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_3b.pth' |
|
|
elif model_version == '7B': |
|
|
config_path = SEEDVR_REPO_DIR / 'configs_7b' / 'main.yaml' |
|
|
checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_7b.pth' |
|
|
else: |
|
|
raise ValueError(f"Unsupported SeedVR model version: {model_version}") |
|
|
|
|
|
config = load_config(str(config_path)) |
|
|
|
|
|
self.runner = VideoDiffusionInfer(config) |
|
|
OmegaConf.set_readonly(self.runner.config, False) |
|
|
|
|
|
self.runner.configure_dit_model(device=self.device, checkpoint=str(checkpoint_path)) |
|
|
self.runner.configure_vae_model() |
|
|
|
|
|
if hasattr(self.runner.vae, "set_memory_limit"): |
|
|
self.runner.vae.set_memory_limit(**self.runner.config.vae.memory_limit) |
|
|
|
|
|
self.is_initialized = True |
|
|
logger.info(f"Runner for SeedVR2 {model_version} initialized and ready.") |
|
|
|
|
|
def _unload_runner(self): |
|
|
"""Removes the runner from VRAM to free resources.""" |
|
|
if self.runner is not None: |
|
|
del self.runner; self.runner = None |
|
|
gc.collect(); torch.cuda.empty_cache() |
|
|
self.is_initialized = False |
|
|
logger.info("SeedVR2 runner unloaded from VRAM.") |
|
|
|
|
|
def process_video(self, input_video_path: str, output_video_path: str, prompt: str, |
|
|
model_version: str = '3B', steps: int = 50, seed: int = 666, |
|
|
progress: gr.Progress = None) -> str: |
|
|
"""Applies HD enhancement to a video using the SeedVR logic.""" |
|
|
try: |
|
|
self._initialize_runner(model_version) |
|
|
set_seed(seed, same_across_ranks=True) |
|
|
|
|
|
self.runner.config.diffusion.timesteps.sampling.steps = steps |
|
|
self.runner.configure_diffusion() |
|
|
|
|
|
video_tensor = read_video(input_video_path, output_format="TCHW")[0] / 255.0 |
|
|
res_h, res_w = video_tensor.shape[-2:] |
|
|
|
|
|
video_transform = Compose([ |
|
|
NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False), |
|
|
Lambda(lambda x: torch.clamp(x, 0.0, 1.0)), |
|
|
DivisibleCrop((16, 16)), |
|
|
Normalize(0.5, 0.5), |
|
|
Rearrange("t c h w -> c t h w"), |
|
|
]) |
|
|
|
|
|
cond_latents = [video_transform(video_tensor.to(self.device))] |
|
|
input_videos = cond_latents |
|
|
|
|
|
self.runner.dit.to("cpu") |
|
|
self.runner.vae.to(self.device) |
|
|
cond_latents = self.runner.vae_encode(cond_latents) |
|
|
self.runner.vae.to("cpu"); gc.collect(); torch.cuda.empty_cache() |
|
|
self.runner.dit.to(self.device) |
|
|
|
|
|
pos_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'pos_emb.pt' |
|
|
neg_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'neg_emb.pt' |
|
|
text_pos_embeds = torch.load(pos_emb_path).to(self.device) |
|
|
text_neg_embeds = torch.load(neg_emb_path).to(self.device) |
|
|
text_embeds_dict = {"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]} |
|
|
|
|
|
noises = [torch.randn_like(latent) for latent in cond_latents] |
|
|
conditions = [self.runner.get_condition(noise, latent_blur=latent, task="sr") for noise, latent in zip(noises, cond_latents)] |
|
|
|
|
|
with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True): |
|
|
video_tensors = self.runner.inference(noises=noises, conditions=conditions, dit_offload=True, **text_embeds_dict) |
|
|
|
|
|
self.runner.dit.to("cpu"); gc.collect(); torch.cuda.empty_cache() |
|
|
|
|
|
self.runner.vae.to(self.device) |
|
|
samples = self.runner.vae_decode(video_tensors) |
|
|
|
|
|
final_sample = samples[0] |
|
|
input_video_sample = input_videos[0] |
|
|
|
|
|
if final_sample.shape[1] < input_video_sample.shape[1]: |
|
|
input_video_sample = input_video_sample[:, :final_sample.shape[1]] |
|
|
|
|
|
final_sample = wavelet_reconstruction( |
|
|
rearrange(final_sample, "c t h w -> t c h w"), |
|
|
rearrange(input_video_sample, "c t h w -> t c h w") |
|
|
) |
|
|
|
|
|
final_sample = rearrange(final_sample, "t c h w -> t h w c") |
|
|
final_sample = final_sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round() |
|
|
final_sample_np = final_sample.to(torch.uint8).cpu().numpy() |
|
|
|
|
|
mediapy.write_video(output_video_path, final_sample_np, fps=24) |
|
|
logger.info(f"HD Mastered video saved to: {output_video_path}") |
|
|
return output_video_path |
|
|
finally: |
|
|
self._unload_runner() |
|
|
|
|
|
|
|
|
seedvr_manager_singleton = SeedVrManager() |