Aduc_sdr / managers /seedvr_manager.py
Carlexxx
feat: Implement self-contained specialist managers
b5023f2
raw
history blame
10.2 kB
# managers/seedvr_manager.py
# AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
#
# Contato:
# Carlos Rodrigues dos Santos
# carlex22@gmail.com
# Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025
#
# Repositórios e Projetos Relacionados:
# GitHub: https://github.com/carlex22/Aduc-sdr
#
# PENDING PATENT NOTICE: Please see NOTICE.md.
#
# Version: 2.3.0
#
# This file implements the SeedVrManager, which uses the SeedVR model for
# video super-resolution. It is self-contained, automatically cloning its own
# dependencies from the official SeedVR repository.
import torch
import os
import gc
import logging
import sys
import subprocess
from pathlib import Path
from urllib.parse import urlparse
from torch.hub import download_url_to_file
import gradio as gr
import mediapy
from einops import rearrange
# Internalized utility for color correction, ensuring stability.
from tools.tensor_utils import wavelet_reconstruction
logger = logging.getLogger(__name__)
# --- Dependency Management ---
DEPS_DIR = Path("./deps")
SEEDVR_REPO_DIR = DEPS_DIR / "SeedVR"
SEEDVR_REPO_URL = "https://github.com/ByteDance-Seed/SeedVR.git"
def setup_seedvr_dependencies():
"""
Ensures the SeedVR repository is cloned and available in the sys.path.
This function is run once when the module is first imported.
"""
if not SEEDVR_REPO_DIR.exists():
logger.info(f"SeedVR repository not found at '{SEEDVR_REPO_DIR}'. Cloning from GitHub...")
try:
DEPS_DIR.mkdir(exist_ok=True)
# Use --depth 1 for a shallow clone to save space and time
subprocess.run(
["git", "clone", "--depth", "1", SEEDVR_REPO_URL, str(SEEDVR_REPO_DIR)],
check=True, capture_output=True, text=True
)
logger.info("SeedVR repository cloned successfully.")
except subprocess.CalledProcessError as e:
logger.error(f"Failed to clone SeedVR repository. Git stderr: {e.stderr}")
raise RuntimeError("Could not clone the required SeedVR dependency from GitHub.")
else:
logger.info("Found local SeedVR repository.")
# Add the cloned repo to Python's path to allow direct imports
if str(SEEDVR_REPO_DIR.resolve()) not in sys.path:
sys.path.insert(0, str(SEEDVR_REPO_DIR.resolve()))
logger.info(f"Added '{SEEDVR_REPO_DIR.resolve()}' to sys.path.")
# --- Execute dependency setup immediately upon module import ---
setup_seedvr_dependencies()
# --- Now that the path is set, we can safely import from the cloned repo ---
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.config import load_config
from common.seed import set_seed
from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video
from omegaconf import OmegaConf
def _load_file_from_url(url, model_dir='./', file_name=None):
"""Helper function to download files from a URL to a local directory."""
os.makedirs(model_dir, exist_ok=True)
filename = file_name or os.path.basename(urlparse(url).path)
cached_file = os.path.abspath(os.path.join(model_dir, filename))
if not os.path.exists(cached_file):
logger.info(f'Downloading: "{url}" to {cached_file}')
download_url_to_file(url, cached_file, hash_prefix=None, progress=True)
return cached_file
class SeedVrManager:
"""
Manages the SeedVR model for HD Mastering tasks.
"""
def __init__(self, workspace_dir="deformes_workspace"):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.runner = None
self.workspace_dir = workspace_dir
self.is_initialized = False
logger.info("SeedVrManager initialized. Model will be loaded on demand.")
def _download_models(self):
"""Downloads the necessary checkpoints for SeedVR2."""
logger.info("Verifying and downloading SeedVR2 models...")
ckpt_dir = SEEDVR_REPO_DIR / 'ckpts'
ckpt_dir.mkdir(exist_ok=True)
pretrain_model_urls = {
'vae': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth',
'dit_3b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth',
'dit_7b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-7B/resolve/main/seedvr2_ema_7b.pth',
'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt'
}
for key, url in pretrain_model_urls.items():
_load_file_from_url(url=url, model_dir=str(ckpt_dir))
logger.info("SeedVR2 models downloaded successfully.")
def _initialize_runner(self, model_version: str):
"""Loads and configures the SeedVR model on demand based on the selected version."""
if self.runner is not None: return
self._download_models()
logger.info(f"Initializing SeedVR2 {model_version} runner...")
if model_version == '3B':
config_path = SEEDVR_REPO_DIR / 'configs_3b' / 'main.yaml'
checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_3b.pth'
elif model_version == '7B':
config_path = SEEDVR_REPO_DIR / 'configs_7b' / 'main.yaml'
checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_7b.pth'
else:
raise ValueError(f"Unsupported SeedVR model version: {model_version}")
config = load_config(str(config_path))
self.runner = VideoDiffusionInfer(config)
OmegaConf.set_readonly(self.runner.config, False)
self.runner.configure_dit_model(device=self.device, checkpoint=str(checkpoint_path))
self.runner.configure_vae_model()
if hasattr(self.runner.vae, "set_memory_limit"):
self.runner.vae.set_memory_limit(**self.runner.config.vae.memory_limit)
self.is_initialized = True
logger.info(f"Runner for SeedVR2 {model_version} initialized and ready.")
def _unload_runner(self):
"""Removes the runner from VRAM to free resources."""
if self.runner is not None:
del self.runner; self.runner = None
gc.collect(); torch.cuda.empty_cache()
self.is_initialized = False
logger.info("SeedVR2 runner unloaded from VRAM.")
def process_video(self, input_video_path: str, output_video_path: str, prompt: str,
model_version: str = '3B', steps: int = 50, seed: int = 666,
progress: gr.Progress = None) -> str:
"""Applies HD enhancement to a video using the SeedVR logic."""
try:
self._initialize_runner(model_version)
set_seed(seed, same_across_ranks=True)
self.runner.config.diffusion.timesteps.sampling.steps = steps
self.runner.configure_diffusion()
video_tensor = read_video(input_video_path, output_format="TCHW")[0] / 255.0
res_h, res_w = video_tensor.shape[-2:]
video_transform = Compose([
NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False),
Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
DivisibleCrop((16, 16)),
Normalize(0.5, 0.5),
Rearrange("t c h w -> c t h w"),
])
cond_latents = [video_transform(video_tensor.to(self.device))]
input_videos = cond_latents
self.runner.dit.to("cpu")
self.runner.vae.to(self.device)
cond_latents = self.runner.vae_encode(cond_latents)
self.runner.vae.to("cpu"); gc.collect(); torch.cuda.empty_cache()
self.runner.dit.to(self.device)
pos_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'pos_emb.pt'
neg_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'neg_emb.pt'
text_pos_embeds = torch.load(pos_emb_path).to(self.device)
text_neg_embeds = torch.load(neg_emb_path).to(self.device)
text_embeds_dict = {"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]}
noises = [torch.randn_like(latent) for latent in cond_latents]
conditions = [self.runner.get_condition(noise, latent_blur=latent, task="sr") for noise, latent in zip(noises, cond_latents)]
with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
video_tensors = self.runner.inference(noises=noises, conditions=conditions, dit_offload=True, **text_embeds_dict)
self.runner.dit.to("cpu"); gc.collect(); torch.cuda.empty_cache()
self.runner.vae.to(self.device)
samples = self.runner.vae_decode(video_tensors)
final_sample = samples[0]
input_video_sample = input_videos[0]
if final_sample.shape[1] < input_video_sample.shape[1]:
input_video_sample = input_video_sample[:, :final_sample.shape[1]]
final_sample = wavelet_reconstruction(
rearrange(final_sample, "c t h w -> t c h w"),
rearrange(input_video_sample, "c t h w -> t c h w")
)
final_sample = rearrange(final_sample, "t c h w -> t h w c")
final_sample = final_sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
final_sample_np = final_sample.to(torch.uint8).cpu().numpy()
mediapy.write_video(output_video_path, final_sample_np, fps=24)
logger.info(f"HD Mastered video saved to: {output_video_path}")
return output_video_path
finally:
self._unload_runner()
# --- Singleton Instance ---
seedvr_manager_singleton = SeedVrManager()