| # // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
| # // | |
| # // Licensed under the Apache License, Version 2.0 (the "License"); | |
| # // you may not use this file except in compliance with the License. | |
| # // You may obtain a copy of the License at | |
| # // | |
| # // http://www.apache.org/licenses/LICENSE-2.0 | |
| # // | |
| # // Unless required by applicable law or agreed to in writing, software | |
| # // distributed under the License is distributed on an "AS IS" BASIS, | |
| # // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # // See the License for the specific language governing permissions and | |
| # // limitations under the License. | |
| from typing import Callable, Optional | |
| from diffusers.models.normalization import RMSNorm | |
| from torch import nn | |
| # (dim: int, eps: float, elementwise_affine: bool) | |
| norm_layer_type = Callable[[int, float, bool], nn.Module] | |
| def get_norm_layer(norm_type: Optional[str]) -> norm_layer_type: | |
| def _norm_layer(dim: int, eps: float, elementwise_affine: bool): | |
| if norm_type is None: | |
| return nn.Identity() | |
| if norm_type == "layer": | |
| return nn.LayerNorm( | |
| normalized_shape=dim, | |
| eps=eps, | |
| elementwise_affine=elementwise_affine, | |
| ) | |
| if norm_type == "rms": | |
| return RMSNorm( | |
| dim=dim, | |
| eps=eps, | |
| elementwise_affine=elementwise_affine, | |
| ) | |
| if norm_type == "fusedln": | |
| from apex.normalization import FusedLayerNorm | |
| return FusedLayerNorm( | |
| normalized_shape=dim, | |
| elementwise_affine=elementwise_affine, | |
| eps=eps, | |
| ) | |
| if norm_type == "fusedrms": | |
| from apex.normalization import FusedRMSNorm | |
| return FusedRMSNorm( | |
| normalized_shape=dim, | |
| elementwise_affine=elementwise_affine, | |
| eps=eps, | |
| ) | |
| raise NotImplementedError(f"{norm_type} is not supported") | |
| return _norm_layer | |