|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from contextlib import nullcontext |
|
|
from typing import Optional, Tuple, Literal, Callable, Union |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution |
|
|
from einops import rearrange |
|
|
|
|
|
from common.distributed.advanced import get_sequence_parallel_world_size |
|
|
from common.logger import get_logger |
|
|
from models.video_vae_v3.modules.causal_inflation_lib import ( |
|
|
InflatedCausalConv3d, |
|
|
causal_norm_wrapper, |
|
|
init_causal_conv3d, |
|
|
remove_head, |
|
|
) |
|
|
from models.video_vae_v3.modules.context_parallel_lib import ( |
|
|
causal_conv_gather_outputs, |
|
|
causal_conv_slice_inputs, |
|
|
) |
|
|
from models.video_vae_v3.modules.global_config import set_norm_limit |
|
|
from models.video_vae_v3.modules.types import ( |
|
|
CausalAutoencoderOutput, |
|
|
CausalDecoderOutput, |
|
|
CausalEncoderOutput, |
|
|
MemoryState, |
|
|
_inflation_mode_t, |
|
|
_memory_device_t, |
|
|
_receptive_field_t, |
|
|
_selective_checkpointing_t, |
|
|
) |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
|
|
|
def gradient_checkpointing(module: Union[Callable, nn.Module], *args, enabled: bool, **kwargs): |
|
|
return module(*args, **kwargs) |
|
|
|
|
|
class ResnetBlock2D(nn.Module): |
|
|
r""" |
|
|
A Resnet block. |
|
|
|
|
|
Parameters: |
|
|
in_channels (`int`): The number of channels in the input. |
|
|
out_channels (`int`, *optional*, default to be `None`): |
|
|
The number of output channels for the first conv2d layer. |
|
|
If None, same as `in_channels`. |
|
|
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, *, in_channels: int, out_channels: Optional[int] = None, dropout: float = 0.0 |
|
|
): |
|
|
super().__init__() |
|
|
self.in_channels = in_channels |
|
|
out_channels = in_channels if out_channels is None else out_channels |
|
|
self.out_channels = out_channels |
|
|
|
|
|
self.nonlinearity = nn.SiLU() |
|
|
|
|
|
self.norm1 = torch.nn.GroupNorm( |
|
|
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True |
|
|
) |
|
|
|
|
|
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
|
|
self.norm2 = torch.nn.GroupNorm( |
|
|
num_groups=32, num_channels=out_channels, eps=1e-6, affine=True |
|
|
) |
|
|
|
|
|
self.dropout = torch.nn.Dropout(dropout) |
|
|
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
|
|
self.use_in_shortcut = self.in_channels != out_channels |
|
|
|
|
|
self.conv_shortcut = None |
|
|
if self.use_in_shortcut: |
|
|
self.conv_shortcut = nn.Conv2d( |
|
|
in_channels, out_channels, kernel_size=1, stride=1, padding=0 |
|
|
) |
|
|
|
|
|
def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: |
|
|
hidden = input_tensor |
|
|
|
|
|
hidden = self.norm1(hidden) |
|
|
hidden = self.nonlinearity(hidden) |
|
|
hidden = self.conv1(hidden) |
|
|
|
|
|
hidden = self.norm2(hidden) |
|
|
hidden = self.nonlinearity(hidden) |
|
|
hidden = self.dropout(hidden) |
|
|
hidden = self.conv2(hidden) |
|
|
|
|
|
if self.conv_shortcut is not None: |
|
|
input_tensor = self.conv_shortcut(input_tensor) |
|
|
|
|
|
output_tensor = input_tensor + hidden |
|
|
|
|
|
return output_tensor |
|
|
|
|
|
class Upsample3D(nn.Module): |
|
|
"""A 3D upsampling layer.""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
channels: int, |
|
|
inflation_mode: _inflation_mode_t = "tail", |
|
|
temporal_up: bool = False, |
|
|
spatial_up: bool = True, |
|
|
slicing: bool = False, |
|
|
): |
|
|
super().__init__() |
|
|
self.channels = channels |
|
|
self.conv = init_causal_conv3d( |
|
|
self.channels, self.channels, kernel_size=3, padding=1, inflation_mode=inflation_mode |
|
|
) |
|
|
|
|
|
self.temporal_up = temporal_up |
|
|
self.spatial_up = spatial_up |
|
|
self.temporal_ratio = 2 if temporal_up else 1 |
|
|
self.spatial_ratio = 2 if spatial_up else 1 |
|
|
self.slicing = slicing |
|
|
|
|
|
upscale_ratio = (self.spatial_ratio**2) * self.temporal_ratio |
|
|
self.upscale_conv = nn.Conv3d( |
|
|
self.channels, self.channels * upscale_ratio, kernel_size=1, padding=0 |
|
|
) |
|
|
identity = ( |
|
|
torch.eye(self.channels).repeat(upscale_ratio, 1).reshape_as(self.upscale_conv.weight) |
|
|
) |
|
|
|
|
|
self.upscale_conv.weight.data.copy_(identity) |
|
|
nn.init.zeros_(self.upscale_conv.bias) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.FloatTensor, |
|
|
memory_state: MemoryState, |
|
|
) -> torch.FloatTensor: |
|
|
return gradient_checkpointing( |
|
|
self.custom_forward, |
|
|
hidden_states, |
|
|
memory_state, |
|
|
enabled=self.training and self.gradient_checkpointing, |
|
|
) |
|
|
|
|
|
def custom_forward( |
|
|
self, |
|
|
hidden_states: torch.FloatTensor, |
|
|
memory_state: MemoryState, |
|
|
) -> torch.FloatTensor: |
|
|
assert hidden_states.shape[1] == self.channels |
|
|
|
|
|
if self.slicing: |
|
|
split_size = hidden_states.size(2) // 2 |
|
|
hidden_states = list( |
|
|
hidden_states.split([split_size, hidden_states.size(2) - split_size], dim=2) |
|
|
) |
|
|
else: |
|
|
hidden_states = [hidden_states] |
|
|
|
|
|
for i in range(len(hidden_states)): |
|
|
hidden_states[i] = self.upscale_conv(hidden_states[i]) |
|
|
hidden_states[i] = rearrange( |
|
|
hidden_states[i], |
|
|
"b (x y z c) f h w -> b c (f z) (h x) (w y)", |
|
|
x=self.spatial_ratio, |
|
|
y=self.spatial_ratio, |
|
|
z=self.temporal_ratio, |
|
|
) |
|
|
|
|
|
|
|
|
if self.temporal_up and memory_state != MemoryState.ACTIVE: |
|
|
hidden_states[0] = remove_head(hidden_states[0]) |
|
|
|
|
|
if self.slicing: |
|
|
hidden_states = self.conv(hidden_states, memory_state=memory_state) |
|
|
return torch.cat(hidden_states, dim=2) |
|
|
else: |
|
|
return self.conv(hidden_states[0], memory_state=memory_state) |
|
|
|
|
|
|
|
|
class Downsample3D(nn.Module): |
|
|
"""A 3D downsampling layer.""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
channels: int, |
|
|
inflation_mode: _inflation_mode_t = "tail", |
|
|
temporal_down: bool = False, |
|
|
spatial_down: bool = True, |
|
|
): |
|
|
super().__init__() |
|
|
self.channels = channels |
|
|
self.temporal_down = temporal_down |
|
|
self.spatial_down = spatial_down |
|
|
|
|
|
self.temporal_ratio = 2 if temporal_down else 1 |
|
|
self.spatial_ratio = 2 if spatial_down else 1 |
|
|
|
|
|
self.temporal_kernel = 3 if temporal_down else 1 |
|
|
self.spatial_kernel = 3 if spatial_down else 1 |
|
|
|
|
|
self.conv = init_causal_conv3d( |
|
|
self.channels, |
|
|
self.channels, |
|
|
kernel_size=(self.temporal_kernel, self.spatial_kernel, self.spatial_kernel), |
|
|
stride=(self.temporal_ratio, self.spatial_ratio, self.spatial_ratio), |
|
|
padding=((1 if self.temporal_down else 0), 0, 0), |
|
|
inflation_mode=inflation_mode, |
|
|
) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.FloatTensor, |
|
|
memory_state: MemoryState, |
|
|
) -> torch.FloatTensor: |
|
|
return gradient_checkpointing( |
|
|
self.custom_forward, |
|
|
hidden_states, |
|
|
memory_state, |
|
|
enabled=self.training and self.gradient_checkpointing, |
|
|
) |
|
|
|
|
|
def custom_forward( |
|
|
self, |
|
|
hidden_states: torch.FloatTensor, |
|
|
memory_state: MemoryState, |
|
|
) -> torch.FloatTensor: |
|
|
|
|
|
assert hidden_states.shape[1] == self.channels |
|
|
|
|
|
if self.spatial_down: |
|
|
hidden_states = F.pad(hidden_states, (0, 1, 0, 1), mode="constant", value=0) |
|
|
|
|
|
hidden_states = self.conv(hidden_states, memory_state=memory_state) |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class ResnetBlock3D(ResnetBlock2D): |
|
|
def __init__( |
|
|
self, |
|
|
*args, |
|
|
inflation_mode: _inflation_mode_t = "tail", |
|
|
time_receptive_field: _receptive_field_t = "half", |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__(*args, **kwargs) |
|
|
self.conv1 = init_causal_conv3d( |
|
|
self.in_channels, |
|
|
self.out_channels, |
|
|
kernel_size=3, |
|
|
stride=1, |
|
|
padding=1, |
|
|
inflation_mode=inflation_mode, |
|
|
) |
|
|
|
|
|
self.conv2 = init_causal_conv3d( |
|
|
self.out_channels, |
|
|
self.out_channels, |
|
|
kernel_size=(1, 3, 3) if time_receptive_field == "half" else (3, 3, 3), |
|
|
stride=1, |
|
|
padding=(0, 1, 1) if time_receptive_field == "half" else (1, 1, 1), |
|
|
inflation_mode=inflation_mode, |
|
|
) |
|
|
|
|
|
if self.use_in_shortcut: |
|
|
self.conv_shortcut = init_causal_conv3d( |
|
|
self.in_channels, |
|
|
self.out_channels, |
|
|
kernel_size=1, |
|
|
stride=1, |
|
|
padding=0, |
|
|
bias=(self.conv_shortcut.bias is not None), |
|
|
inflation_mode=inflation_mode, |
|
|
) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
def forward(self, input_tensor: torch.Tensor, memory_state: MemoryState = MemoryState.UNSET): |
|
|
return gradient_checkpointing( |
|
|
self.custom_forward, |
|
|
input_tensor, |
|
|
memory_state, |
|
|
enabled=self.training and self.gradient_checkpointing, |
|
|
) |
|
|
|
|
|
def custom_forward( |
|
|
self, input_tensor: torch.Tensor, memory_state: MemoryState = MemoryState.UNSET |
|
|
): |
|
|
assert memory_state != MemoryState.UNSET |
|
|
hidden_states = input_tensor |
|
|
|
|
|
hidden_states = causal_norm_wrapper(self.norm1, hidden_states) |
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
hidden_states = self.conv1(hidden_states, memory_state=memory_state) |
|
|
|
|
|
hidden_states = causal_norm_wrapper(self.norm2, hidden_states) |
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
hidden_states = self.dropout(hidden_states) |
|
|
hidden_states = self.conv2(hidden_states, memory_state=memory_state) |
|
|
|
|
|
if self.conv_shortcut is not None: |
|
|
input_tensor = self.conv_shortcut(input_tensor, memory_state=memory_state) |
|
|
|
|
|
output_tensor = input_tensor + hidden_states |
|
|
|
|
|
return output_tensor |
|
|
|
|
|
|
|
|
class DownEncoderBlock3D(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
in_channels: int, |
|
|
out_channels: int, |
|
|
dropout: float = 0.0, |
|
|
num_layers: int = 1, |
|
|
add_downsample: bool = True, |
|
|
inflation_mode: _inflation_mode_t = "tail", |
|
|
time_receptive_field: _receptive_field_t = "half", |
|
|
temporal_down: bool = True, |
|
|
spatial_down: bool = True, |
|
|
): |
|
|
super().__init__() |
|
|
resnets = [] |
|
|
|
|
|
for i in range(num_layers): |
|
|
in_channels = in_channels if i == 0 else out_channels |
|
|
resnets.append( |
|
|
ResnetBlock3D( |
|
|
in_channels=in_channels, |
|
|
out_channels=out_channels, |
|
|
dropout=dropout, |
|
|
inflation_mode=inflation_mode, |
|
|
time_receptive_field=time_receptive_field, |
|
|
) |
|
|
) |
|
|
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
|
|
self.downsamplers = None |
|
|
if add_downsample: |
|
|
|
|
|
self.downsamplers = nn.ModuleList( |
|
|
[ |
|
|
Downsample3D( |
|
|
channels=out_channels, |
|
|
inflation_mode=inflation_mode, |
|
|
temporal_down=temporal_down, |
|
|
spatial_down=spatial_down, |
|
|
) |
|
|
] |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, hidden_states: torch.FloatTensor, memory_state: MemoryState |
|
|
) -> torch.FloatTensor: |
|
|
for resnet in self.resnets: |
|
|
hidden_states = resnet(hidden_states, memory_state=memory_state) |
|
|
|
|
|
if self.downsamplers is not None: |
|
|
for downsampler in self.downsamplers: |
|
|
hidden_states = downsampler(hidden_states, memory_state=memory_state) |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class UpDecoderBlock3D(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
in_channels: int, |
|
|
out_channels: int, |
|
|
dropout: float = 0.0, |
|
|
num_layers: int = 1, |
|
|
add_upsample: bool = True, |
|
|
inflation_mode: _inflation_mode_t = "tail", |
|
|
time_receptive_field: _receptive_field_t = "half", |
|
|
temporal_up: bool = True, |
|
|
spatial_up: bool = True, |
|
|
slicing: bool = False, |
|
|
): |
|
|
super().__init__() |
|
|
resnets = [] |
|
|
|
|
|
for i in range(num_layers): |
|
|
input_channels = in_channels if i == 0 else out_channels |
|
|
|
|
|
resnets.append( |
|
|
ResnetBlock3D( |
|
|
in_channels=input_channels, |
|
|
out_channels=out_channels, |
|
|
dropout=dropout, |
|
|
inflation_mode=inflation_mode, |
|
|
time_receptive_field=time_receptive_field, |
|
|
) |
|
|
) |
|
|
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
|
|
self.upsamplers = None |
|
|
|
|
|
if add_upsample: |
|
|
self.upsamplers = nn.ModuleList( |
|
|
[ |
|
|
Upsample3D( |
|
|
channels=out_channels, |
|
|
inflation_mode=inflation_mode, |
|
|
temporal_up=temporal_up, |
|
|
spatial_up=spatial_up, |
|
|
slicing=slicing, |
|
|
) |
|
|
] |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, hidden_states: torch.FloatTensor, memory_state: MemoryState |
|
|
) -> torch.FloatTensor: |
|
|
for resnet in self.resnets: |
|
|
hidden_states = resnet(hidden_states, memory_state=memory_state) |
|
|
|
|
|
if self.upsamplers is not None: |
|
|
for upsampler in self.upsamplers: |
|
|
hidden_states = upsampler(hidden_states, memory_state=memory_state) |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class UNetMidBlock3D(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
channels: int, |
|
|
dropout: float = 0.0, |
|
|
inflation_mode: _inflation_mode_t = "tail", |
|
|
time_receptive_field: _receptive_field_t = "half", |
|
|
): |
|
|
super().__init__() |
|
|
self.resnets = nn.ModuleList( |
|
|
[ |
|
|
ResnetBlock3D( |
|
|
in_channels=channels, |
|
|
out_channels=channels, |
|
|
dropout=dropout, |
|
|
inflation_mode=inflation_mode, |
|
|
time_receptive_field=time_receptive_field, |
|
|
), |
|
|
ResnetBlock3D( |
|
|
in_channels=channels, |
|
|
out_channels=channels, |
|
|
dropout=dropout, |
|
|
inflation_mode=inflation_mode, |
|
|
time_receptive_field=time_receptive_field, |
|
|
), |
|
|
] |
|
|
) |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor, memory_state: MemoryState): |
|
|
for resnet in self.resnets: |
|
|
hidden_states = resnet(hidden_states, memory_state) |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class Encoder3D(nn.Module): |
|
|
r""" |
|
|
The `Encoder` layer of a variational autoencoder that encodes |
|
|
its input into a latent representation. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
in_channels: int = 3, |
|
|
out_channels: int = 3, |
|
|
block_out_channels: Tuple[int, ...] = (64,), |
|
|
layers_per_block: int = 2, |
|
|
double_z: bool = True, |
|
|
temporal_down_num: int = 2, |
|
|
inflation_mode: _inflation_mode_t = "tail", |
|
|
time_receptive_field: _receptive_field_t = "half", |
|
|
selective_checkpointing: Tuple[_selective_checkpointing_t] = ("none",), |
|
|
): |
|
|
super().__init__() |
|
|
self.layers_per_block = layers_per_block |
|
|
|
|
|
self.temporal_down_num = temporal_down_num |
|
|
|
|
|
self.conv_in = init_causal_conv3d( |
|
|
in_channels, |
|
|
block_out_channels[0], |
|
|
kernel_size=3, |
|
|
stride=1, |
|
|
padding=1, |
|
|
inflation_mode=inflation_mode, |
|
|
) |
|
|
|
|
|
self.down_blocks = nn.ModuleList([]) |
|
|
|
|
|
|
|
|
output_channel = block_out_channels[0] |
|
|
for i in range(len(block_out_channels)): |
|
|
input_channel = output_channel |
|
|
output_channel = block_out_channels[i] |
|
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
is_temporal_down_block = i >= len(block_out_channels) - self.temporal_down_num - 1 |
|
|
|
|
|
|
|
|
down_block = DownEncoderBlock3D( |
|
|
num_layers=self.layers_per_block, |
|
|
in_channels=input_channel, |
|
|
out_channels=output_channel, |
|
|
add_downsample=not is_final_block, |
|
|
temporal_down=is_temporal_down_block, |
|
|
spatial_down=True, |
|
|
inflation_mode=inflation_mode, |
|
|
time_receptive_field=time_receptive_field, |
|
|
) |
|
|
self.down_blocks.append(down_block) |
|
|
|
|
|
|
|
|
self.mid_block = UNetMidBlock3D( |
|
|
channels=block_out_channels[-1], |
|
|
inflation_mode=inflation_mode, |
|
|
time_receptive_field=time_receptive_field, |
|
|
) |
|
|
|
|
|
|
|
|
self.conv_norm_out = nn.GroupNorm( |
|
|
num_channels=block_out_channels[-1], num_groups=32, eps=1e-6 |
|
|
) |
|
|
self.conv_act = nn.SiLU() |
|
|
|
|
|
conv_out_channels = 2 * out_channels if double_z else out_channels |
|
|
self.conv_out = init_causal_conv3d( |
|
|
block_out_channels[-1], conv_out_channels, 3, padding=1, inflation_mode=inflation_mode |
|
|
) |
|
|
|
|
|
assert len(selective_checkpointing) == len(self.down_blocks) |
|
|
self.set_gradient_checkpointing(selective_checkpointing) |
|
|
|
|
|
def set_gradient_checkpointing(self, checkpointing_types): |
|
|
gradient_checkpointing = [] |
|
|
for down_block, sac_type in zip(self.down_blocks, checkpointing_types): |
|
|
if sac_type == "coarse": |
|
|
gradient_checkpointing.append(True) |
|
|
elif sac_type == "fine": |
|
|
for n, m in down_block.named_modules(): |
|
|
if hasattr(m, "gradient_checkpointing"): |
|
|
m.gradient_checkpointing = True |
|
|
logger.debug(f"set gradient_checkpointing: {n}") |
|
|
gradient_checkpointing.append(False) |
|
|
else: |
|
|
gradient_checkpointing.append(False) |
|
|
self.gradient_checkpointing = gradient_checkpointing |
|
|
logger.info(f"[Encoder3D] gradient_checkpointing: {checkpointing_types}") |
|
|
|
|
|
def forward(self, sample: torch.FloatTensor, memory_state: MemoryState) -> torch.FloatTensor: |
|
|
r"""The forward method of the `Encoder` class.""" |
|
|
sample = self.conv_in(sample, memory_state=memory_state) |
|
|
|
|
|
for down_block, sac in zip(self.down_blocks, self.gradient_checkpointing): |
|
|
sample = gradient_checkpointing( |
|
|
down_block, |
|
|
sample, |
|
|
memory_state=memory_state, |
|
|
enabled=self.training and sac, |
|
|
) |
|
|
|
|
|
|
|
|
sample = self.mid_block(sample, memory_state=memory_state) |
|
|
|
|
|
|
|
|
sample = causal_norm_wrapper(self.conv_norm_out, sample) |
|
|
sample = self.conv_act(sample) |
|
|
sample = self.conv_out(sample, memory_state=memory_state) |
|
|
|
|
|
return sample |
|
|
|
|
|
|
|
|
class Decoder3D(nn.Module): |
|
|
r""" |
|
|
The `Decoder` layer of a variational autoencoder that |
|
|
decodes its latent representation into an output sample. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
in_channels: int = 3, |
|
|
out_channels: int = 3, |
|
|
block_out_channels: Tuple[int, ...] = (64,), |
|
|
layers_per_block: int = 2, |
|
|
inflation_mode: _inflation_mode_t = "tail", |
|
|
time_receptive_field: _receptive_field_t = "half", |
|
|
temporal_up_num: int = 2, |
|
|
slicing_up_num: int = 0, |
|
|
selective_checkpointing: Tuple[_selective_checkpointing_t] = ("none",), |
|
|
): |
|
|
super().__init__() |
|
|
self.layers_per_block = layers_per_block |
|
|
self.temporal_up_num = temporal_up_num |
|
|
|
|
|
self.conv_in = init_causal_conv3d( |
|
|
in_channels, |
|
|
block_out_channels[-1], |
|
|
kernel_size=3, |
|
|
stride=1, |
|
|
padding=1, |
|
|
inflation_mode=inflation_mode, |
|
|
) |
|
|
|
|
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
|
|
|
|
|
self.mid_block = UNetMidBlock3D( |
|
|
channels=block_out_channels[-1], |
|
|
inflation_mode=inflation_mode, |
|
|
time_receptive_field=time_receptive_field, |
|
|
) |
|
|
|
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
|
output_channel = reversed_block_out_channels[0] |
|
|
for i in range(len(reversed_block_out_channels)): |
|
|
prev_output_channel = output_channel |
|
|
output_channel = reversed_block_out_channels[i] |
|
|
|
|
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
is_temporal_up_block = i < self.temporal_up_num |
|
|
is_slicing_up_block = i >= len(block_out_channels) - slicing_up_num |
|
|
|
|
|
|
|
|
up_block = UpDecoderBlock3D( |
|
|
num_layers=self.layers_per_block + 1, |
|
|
in_channels=prev_output_channel, |
|
|
out_channels=output_channel, |
|
|
add_upsample=not is_final_block, |
|
|
temporal_up=is_temporal_up_block, |
|
|
slicing=is_slicing_up_block, |
|
|
inflation_mode=inflation_mode, |
|
|
time_receptive_field=time_receptive_field, |
|
|
) |
|
|
self.up_blocks.append(up_block) |
|
|
|
|
|
|
|
|
self.conv_norm_out = nn.GroupNorm( |
|
|
num_channels=block_out_channels[0], num_groups=32, eps=1e-6 |
|
|
) |
|
|
self.conv_act = nn.SiLU() |
|
|
self.conv_out = init_causal_conv3d( |
|
|
block_out_channels[0], out_channels, 3, padding=1, inflation_mode=inflation_mode |
|
|
) |
|
|
|
|
|
assert len(selective_checkpointing) == len(self.up_blocks) |
|
|
self.set_gradient_checkpointing(selective_checkpointing) |
|
|
|
|
|
def set_gradient_checkpointing(self, checkpointing_types): |
|
|
gradient_checkpointing = [] |
|
|
for up_block, sac_type in zip(self.up_blocks, checkpointing_types): |
|
|
if sac_type == "coarse": |
|
|
gradient_checkpointing.append(True) |
|
|
elif sac_type == "fine": |
|
|
for n, m in up_block.named_modules(): |
|
|
if hasattr(m, "gradient_checkpointing"): |
|
|
m.gradient_checkpointing = True |
|
|
logger.debug(f"set gradient_checkpointing: {n}") |
|
|
gradient_checkpointing.append(False) |
|
|
else: |
|
|
gradient_checkpointing.append(False) |
|
|
self.gradient_checkpointing = gradient_checkpointing |
|
|
logger.info(f"[Decoder3D] gradient_checkpointing: {checkpointing_types}") |
|
|
|
|
|
def forward(self, sample: torch.FloatTensor, memory_state: MemoryState) -> torch.FloatTensor: |
|
|
r"""The forward method of the `Decoder` class.""" |
|
|
|
|
|
sample = self.conv_in(sample, memory_state=memory_state) |
|
|
|
|
|
|
|
|
sample = self.mid_block(sample, memory_state=memory_state) |
|
|
|
|
|
|
|
|
for up_block, sac in zip(self.up_blocks, self.gradient_checkpointing): |
|
|
sample = gradient_checkpointing( |
|
|
up_block, |
|
|
sample, |
|
|
memory_state=memory_state, |
|
|
enabled=self.training and sac, |
|
|
) |
|
|
|
|
|
|
|
|
sample = causal_norm_wrapper(self.conv_norm_out, sample) |
|
|
sample = self.conv_act(sample) |
|
|
sample = self.conv_out(sample, memory_state=memory_state) |
|
|
|
|
|
return sample |
|
|
|
|
|
|
|
|
class VideoAutoencoderKL(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
in_channels: int = 3, |
|
|
out_channels: int = 3, |
|
|
block_out_channels: Tuple[int] = (64,), |
|
|
layers_per_block: int = 1, |
|
|
latent_channels: int = 4, |
|
|
use_quant_conv: bool = True, |
|
|
use_post_quant_conv: bool = True, |
|
|
enc_selective_checkpointing: Tuple[_selective_checkpointing_t] = ("none",), |
|
|
dec_selective_checkpointing: Tuple[_selective_checkpointing_t] = ("none",), |
|
|
temporal_scale_num: int = 3, |
|
|
slicing_up_num: int = 0, |
|
|
inflation_mode: _inflation_mode_t = "tail", |
|
|
time_receptive_field: _receptive_field_t = "half", |
|
|
slicing_sample_min_size: int = None, |
|
|
spatial_downsample_factor: int = 16, |
|
|
temporal_downsample_factor: int = 8, |
|
|
freeze_encoder: bool = False, |
|
|
): |
|
|
super().__init__() |
|
|
self.spatial_downsample_factor = spatial_downsample_factor |
|
|
self.temporal_downsample_factor = temporal_downsample_factor |
|
|
self.freeze_encoder = freeze_encoder |
|
|
if slicing_sample_min_size is None: |
|
|
slicing_sample_min_size = temporal_downsample_factor |
|
|
self.slicing_sample_min_size = slicing_sample_min_size |
|
|
self.slicing_latent_min_size = slicing_sample_min_size // (2**temporal_scale_num) |
|
|
|
|
|
|
|
|
self.encoder = Encoder3D( |
|
|
in_channels=in_channels, |
|
|
out_channels=latent_channels, |
|
|
block_out_channels=block_out_channels, |
|
|
layers_per_block=layers_per_block, |
|
|
double_z=True, |
|
|
temporal_down_num=temporal_scale_num, |
|
|
selective_checkpointing=enc_selective_checkpointing, |
|
|
inflation_mode=inflation_mode, |
|
|
time_receptive_field=time_receptive_field, |
|
|
) |
|
|
|
|
|
|
|
|
self.decoder = Decoder3D( |
|
|
in_channels=latent_channels, |
|
|
out_channels=out_channels, |
|
|
block_out_channels=block_out_channels, |
|
|
layers_per_block=layers_per_block, |
|
|
|
|
|
temporal_up_num=temporal_scale_num, |
|
|
slicing_up_num=slicing_up_num, |
|
|
selective_checkpointing=dec_selective_checkpointing, |
|
|
inflation_mode=inflation_mode, |
|
|
time_receptive_field=time_receptive_field, |
|
|
) |
|
|
|
|
|
self.quant_conv = ( |
|
|
init_causal_conv3d( |
|
|
in_channels=2 * latent_channels, |
|
|
out_channels=2 * latent_channels, |
|
|
kernel_size=1, |
|
|
inflation_mode=inflation_mode, |
|
|
) |
|
|
if use_quant_conv |
|
|
else None |
|
|
) |
|
|
self.post_quant_conv = ( |
|
|
init_causal_conv3d( |
|
|
in_channels=latent_channels, |
|
|
out_channels=latent_channels, |
|
|
kernel_size=1, |
|
|
inflation_mode=inflation_mode, |
|
|
) |
|
|
if use_post_quant_conv |
|
|
else None |
|
|
) |
|
|
|
|
|
self.use_slicing = False |
|
|
|
|
|
def enable_slicing(self): |
|
|
self.use_slicing = True |
|
|
|
|
|
def disable_slicing(self): |
|
|
self.use_slicing = False |
|
|
|
|
|
def encode(self, x: torch.FloatTensor) -> CausalEncoderOutput: |
|
|
if x.ndim == 4: |
|
|
x = x.unsqueeze(2) |
|
|
h = self.slicing_encode(x) |
|
|
p = DiagonalGaussianDistribution(h) |
|
|
z = p.sample() |
|
|
return CausalEncoderOutput(z, p) |
|
|
|
|
|
def decode(self, z: torch.FloatTensor) -> CausalDecoderOutput: |
|
|
if z.ndim == 4: |
|
|
z = z.unsqueeze(2) |
|
|
x = self.slicing_decode(z) |
|
|
return CausalDecoderOutput(x) |
|
|
|
|
|
def _encode(self, x: torch.Tensor, memory_state: MemoryState) -> torch.Tensor: |
|
|
x = causal_conv_slice_inputs(x, self.slicing_sample_min_size, memory_state=memory_state) |
|
|
h = self.encoder(x, memory_state=memory_state) |
|
|
h = self.quant_conv(h, memory_state=memory_state) if self.quant_conv is not None else h |
|
|
h = causal_conv_gather_outputs(h) |
|
|
return h |
|
|
|
|
|
def _decode(self, z: torch.Tensor, memory_state: MemoryState) -> torch.Tensor: |
|
|
z = causal_conv_slice_inputs(z, self.slicing_latent_min_size, memory_state=memory_state) |
|
|
z = ( |
|
|
self.post_quant_conv(z, memory_state=memory_state) |
|
|
if self.post_quant_conv is not None |
|
|
else z |
|
|
) |
|
|
x = self.decoder(z, memory_state=memory_state) |
|
|
x = causal_conv_gather_outputs(x) |
|
|
return x |
|
|
|
|
|
def slicing_encode(self, x: torch.Tensor) -> torch.Tensor: |
|
|
sp_size = get_sequence_parallel_world_size() |
|
|
if self.use_slicing and (x.shape[2] - 1) > self.slicing_sample_min_size * sp_size: |
|
|
x_slices = x[:, :, 1:].split(split_size=self.slicing_sample_min_size * sp_size, dim=2) |
|
|
encoded_slices = [ |
|
|
self._encode( |
|
|
torch.cat((x[:, :, :1], x_slices[0]), dim=2), |
|
|
memory_state=MemoryState.INITIALIZING, |
|
|
) |
|
|
] |
|
|
for x_idx in range(1, len(x_slices)): |
|
|
encoded_slices.append( |
|
|
self._encode(x_slices[x_idx], memory_state=MemoryState.ACTIVE) |
|
|
) |
|
|
return torch.cat(encoded_slices, dim=2) |
|
|
else: |
|
|
return self._encode(x, memory_state=MemoryState.DISABLED) |
|
|
|
|
|
def slicing_decode(self, z: torch.Tensor) -> torch.Tensor: |
|
|
sp_size = get_sequence_parallel_world_size() |
|
|
if self.use_slicing and (z.shape[2] - 1) > self.slicing_latent_min_size * sp_size: |
|
|
z_slices = z[:, :, 1:].split(split_size=self.slicing_latent_min_size * sp_size, dim=2) |
|
|
decoded_slices = [ |
|
|
self._decode( |
|
|
torch.cat((z[:, :, :1], z_slices[0]), dim=2), |
|
|
memory_state=MemoryState.INITIALIZING, |
|
|
) |
|
|
] |
|
|
for z_idx in range(1, len(z_slices)): |
|
|
decoded_slices.append( |
|
|
self._decode(z_slices[z_idx], memory_state=MemoryState.ACTIVE) |
|
|
) |
|
|
return torch.cat(decoded_slices, dim=2) |
|
|
else: |
|
|
return self._decode(z, memory_state=MemoryState.DISABLED) |
|
|
|
|
|
def forward(self, x: torch.FloatTensor) -> CausalAutoencoderOutput: |
|
|
with torch.no_grad() if self.freeze_encoder else nullcontext(): |
|
|
z, p = self.encode(x) |
|
|
x = self.decode(z).sample |
|
|
return CausalAutoencoderOutput(x, z, p) |
|
|
|
|
|
def preprocess(self, x: torch.Tensor): |
|
|
|
|
|
assert x.ndim == 4 or x.size(2) % self.temporal_downsample_factor == 1 |
|
|
return x |
|
|
|
|
|
def postprocess(self, x: torch.Tensor): |
|
|
|
|
|
return x |
|
|
|
|
|
def set_causal_slicing( |
|
|
self, |
|
|
*, |
|
|
split_size: Optional[int], |
|
|
memory_device: _memory_device_t, |
|
|
): |
|
|
assert ( |
|
|
split_size is None or memory_device is not None |
|
|
), "if split_size is set, memory_device must not be None." |
|
|
if split_size is not None: |
|
|
self.enable_slicing() |
|
|
self.slicing_sample_min_size = split_size |
|
|
self.slicing_latent_min_size = split_size // self.temporal_downsample_factor |
|
|
else: |
|
|
self.disable_slicing() |
|
|
for module in self.modules(): |
|
|
if isinstance(module, InflatedCausalConv3d): |
|
|
module.set_memory_device(memory_device) |
|
|
|
|
|
def set_memory_limit(self, conv_max_mem: Optional[float], norm_max_mem: Optional[float]): |
|
|
set_norm_limit(norm_max_mem) |
|
|
for m in self.modules(): |
|
|
if isinstance(m, InflatedCausalConv3d): |
|
|
m.set_memory_limit(conv_max_mem if conv_max_mem is not None else float("inf")) |
|
|
|
|
|
|
|
|
class VideoAutoencoderKLWrapper(VideoAutoencoderKL): |
|
|
def __init__( |
|
|
self, *args, spatial_downsample_factor: int, temporal_downsample_factor: int, **kwargs |
|
|
): |
|
|
self.spatial_downsample_factor = spatial_downsample_factor |
|
|
self.temporal_downsample_factor = temporal_downsample_factor |
|
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
def forward(self, x) -> CausalAutoencoderOutput: |
|
|
z, _, p = self.encode(x) |
|
|
x, _ = self.decode(z) |
|
|
return CausalAutoencoderOutput(x, z, None, p) |
|
|
|
|
|
def encode(self, x) -> CausalEncoderOutput: |
|
|
if x.ndim == 4: |
|
|
x = x.unsqueeze(2) |
|
|
p = super().encode(x).latent_dist |
|
|
z = p.sample().squeeze(2) |
|
|
return CausalEncoderOutput(z, None, p) |
|
|
|
|
|
def decode(self, z) -> CausalDecoderOutput: |
|
|
if z.ndim == 4: |
|
|
z = z.unsqueeze(2) |
|
|
x = super().decode(z).sample.squeeze(2) |
|
|
return CausalDecoderOutput(x, None) |
|
|
|
|
|
def preprocess(self, x): |
|
|
|
|
|
assert x.ndim == 4 or x.size(2) % 4 == 1 |
|
|
return x |
|
|
|
|
|
def postprocess(self, x): |
|
|
|
|
|
return x |
|
|
|
|
|
def set_causal_slicing( |
|
|
self, |
|
|
*, |
|
|
split_size: Optional[int], |
|
|
memory_device: Optional[Literal["cpu", "same"]], |
|
|
): |
|
|
assert ( |
|
|
split_size is None or memory_device is not None |
|
|
), "if split_size is set, memory_device must not be None." |
|
|
if split_size is not None: |
|
|
self.enable_slicing() |
|
|
else: |
|
|
self.disable_slicing() |
|
|
self.slicing_sample_min_size = split_size |
|
|
if split_size is not None: |
|
|
self.slicing_latent_min_size = split_size // self.temporal_downsample_factor |
|
|
for module in self.modules(): |
|
|
if isinstance(module, InflatedCausalConv3d): |
|
|
module.set_memory_device(memory_device) |