Delete SeedVR/app.py
Browse files- SeedVR/app.py +0 -235
SeedVR/app.py
DELETED
|
@@ -1,235 +0,0 @@
|
|
| 1 |
-
# app.py (VERSÃO FINAL E CORRIGIDA)
|
| 2 |
-
|
| 3 |
-
import spaces
|
| 4 |
-
import subprocess
|
| 5 |
-
import os
|
| 6 |
-
import torch
|
| 7 |
-
import mediapy
|
| 8 |
-
from einops import rearrange
|
| 9 |
-
from omegaconf import OmegaConf
|
| 10 |
-
import datetime
|
| 11 |
-
from tqdm import tqdm
|
| 12 |
-
import gc
|
| 13 |
-
import uuid
|
| 14 |
-
import mimetypes
|
| 15 |
-
import torchvision.transforms as T
|
| 16 |
-
from PIL import Image
|
| 17 |
-
from pathlib import Path
|
| 18 |
-
import gradio as gr
|
| 19 |
-
|
| 20 |
-
# --- Módulos do SeedVR (agora que estão no ambiente, podemos importá-los) ---
|
| 21 |
-
from data.image.transforms.divisible_crop import DivisibleCrop
|
| 22 |
-
from data.image.transforms.na_resize import NaResize
|
| 23 |
-
from data.video.transforms.rearrange import Rearrange
|
| 24 |
-
from projects.video_diffusion_sr.color_fix import wavelet_reconstruction
|
| 25 |
-
from torchvision.transforms import Compose, Lambda, Normalize
|
| 26 |
-
from torchvision.io.video import read_video
|
| 27 |
-
from common.distributed import init_torch
|
| 28 |
-
from common.distributed.advanced import init_sequence_parallel
|
| 29 |
-
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
|
| 30 |
-
from common.config import load_config
|
| 31 |
-
from common.distributed.ops import sync_data
|
| 32 |
-
from common.seed import set_seed
|
| 33 |
-
from common.partition import partition_by_size
|
| 34 |
-
|
| 35 |
-
# --- CONFIGURAÇÃO DO AMBIENTE (REMOVIDA) ---
|
| 36 |
-
# REMOVIDO: A instalação do flash-attn e apex já é feita no Dockerfile.
|
| 37 |
-
# REMOVIDO: O download dos checkpoints do modelo já é feito no Dockerfile.
|
| 38 |
-
# REMOVIDO: A configuração de torch.distributed é tratada de forma mais simples.
|
| 39 |
-
|
| 40 |
-
# Verificação para garantir que estamos no diretório certo
|
| 41 |
-
print(f"Diretório de trabalho atual: {os.getcwd()}")
|
| 42 |
-
if not os.path.exists('./projects'):
|
| 43 |
-
print("AVISO: O script parece não estar rodando de dentro do diretório /app/SeedVR. Verifique o WORKDIR no Dockerfile.")
|
| 44 |
-
|
| 45 |
-
# Checa se a correção de cor está disponível
|
| 46 |
-
use_colorfix = os.path.exists("./projects/video_diffusion_sr/color_fix.py")
|
| 47 |
-
if not use_colorfix:
|
| 48 |
-
print('Atenção: Correção de cor (color_fix.py) não disponível!')
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
def configure_sequence_parallel(sp_size):
|
| 52 |
-
if sp_size > 1:
|
| 53 |
-
init_sequence_parallel(sp_size)
|
| 54 |
-
|
| 55 |
-
# O decorador @spaces.GPU garante que a função rode na GPU e gerencia a duração
|
| 56 |
-
@spaces.GPU(duration=120)
|
| 57 |
-
def configure_runner(sp_size):
|
| 58 |
-
config_path = os.path.join('./configs_3b', 'main.yaml')
|
| 59 |
-
config = load_config(config_path)
|
| 60 |
-
runner = VideoDiffusionInfer(config)
|
| 61 |
-
OmegaConf.set_readonly(runner.config, False)
|
| 62 |
-
|
| 63 |
-
# Inicializa o torch para um único processo
|
| 64 |
-
os.environ["MASTER_ADDR"] = "127.0.0.1"
|
| 65 |
-
os.environ["MASTER_PORT"] = "12355"
|
| 66 |
-
if "RANK" not in os.environ:
|
| 67 |
-
os.environ["RANK"] = "0"
|
| 68 |
-
if "WORLD_SIZE" not in os.environ:
|
| 69 |
-
os.environ["WORLD_SIZE"] = "1"
|
| 70 |
-
|
| 71 |
-
init_torch(cudnn_benchmark=False, timeout=datetime.timedelta(seconds=3600))
|
| 72 |
-
configure_sequence_parallel(sp_size)
|
| 73 |
-
|
| 74 |
-
# Os checkpoints estão no diretório ckpts, conforme baixado pelo Dockerfile
|
| 75 |
-
runner.configure_dit_model(device="cuda", checkpoint='./ckpts/seedvr2_ema_3b.pth')
|
| 76 |
-
runner.configure_vae_model(checkpoint_path='./ckpts/ema_vae.pth')
|
| 77 |
-
|
| 78 |
-
if hasattr(runner.vae, "set_memory_limit"):
|
| 79 |
-
runner.vae.set_memory_limit(**runner.config.vae.memory_limit)
|
| 80 |
-
return runner
|
| 81 |
-
|
| 82 |
-
@spaces.GPU(duration=120)
|
| 83 |
-
def generation_step(runner, text_embeds_dict, cond_latents):
|
| 84 |
-
def _move_to_cuda(x):
|
| 85 |
-
return [i.to(torch.device("cuda")) for i in x]
|
| 86 |
-
|
| 87 |
-
noises = [torch.randn_like(latent) for latent in cond_latents]
|
| 88 |
-
aug_noises = [torch.randn_like(latent) for latent in cond_latents]
|
| 89 |
-
noises, aug_noises, cond_latents = sync_data((noises, aug_noises, cond_latents), 0)
|
| 90 |
-
noises, aug_noises, cond_latents = list(map(_move_to_cuda, (noises, aug_noises, cond_latents)))
|
| 91 |
-
|
| 92 |
-
cond_noise_scale = 0.1
|
| 93 |
-
def _add_noise(x, aug_noise):
|
| 94 |
-
t = (torch.tensor([1000.0], device=torch.device("cuda")) * cond_noise_scale)
|
| 95 |
-
shape = torch.tensor(x.shape[1:], device=torch.device("cuda"))[None]
|
| 96 |
-
t = runner.timestep_transform(t, shape)
|
| 97 |
-
x = runner.schedule.forward(x, aug_noise, t)
|
| 98 |
-
return x
|
| 99 |
-
|
| 100 |
-
conditions = [
|
| 101 |
-
runner.get_condition(noise, task="sr", latent_blur=_add_noise(latent_blur, aug_noise))
|
| 102 |
-
for noise, aug_noise, latent_blur in zip(noises, aug_noises, cond_latents)
|
| 103 |
-
]
|
| 104 |
-
|
| 105 |
-
with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
|
| 106 |
-
video_tensors = runner.inference(noises=noises, conditions=conditions, dit_offload=False, **text_embeds_dict)
|
| 107 |
-
|
| 108 |
-
samples = [rearrange(video, "c t h w -> t c h w") for video in video_tensors]
|
| 109 |
-
del video_tensors
|
| 110 |
-
return samples
|
| 111 |
-
|
| 112 |
-
@spaces.GPU(duration=120)
|
| 113 |
-
def generation_loop(video_path, seed, fps_out, batch_size=1, cfg_scale=1.0, cfg_rescale=0.0, sample_steps=1, res_h=720, res_w=1280, sp_size=1):
|
| 114 |
-
# O Gradio passa o caminho do arquivo temporário
|
| 115 |
-
if video_path is None:
|
| 116 |
-
raise gr.Error("Por favor, faça o upload de um arquivo de vídeo ou imagem.")
|
| 117 |
-
|
| 118 |
-
runner = configure_runner(sp_size)
|
| 119 |
-
|
| 120 |
-
def _extract_text_embeds():
|
| 121 |
-
text_pos_embeds = torch.load('pos_emb.pt')
|
| 122 |
-
text_neg_embeds = torch.load('neg_emb.pt')
|
| 123 |
-
return [{"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]}]
|
| 124 |
-
|
| 125 |
-
def cut_videos(videos, sp_size):
|
| 126 |
-
if videos.size(1) > 121: videos = videos[:, :121]
|
| 127 |
-
t = videos.size(1)
|
| 128 |
-
if t <= 4 * sp_size:
|
| 129 |
-
padding = torch.cat([videos[:, -1].unsqueeze(1)] * (4 * sp_size - t + 1), dim=1)
|
| 130 |
-
return torch.cat([videos, padding], dim=1)
|
| 131 |
-
if (t - 1) % (4 * sp_size) == 0: return videos
|
| 132 |
-
padding = torch.cat([videos[:, -1].unsqueeze(1)] * (4 * sp_size - ((t - 1) % (4 * sp_size))), dim=1)
|
| 133 |
-
return torch.cat([videos, padding], dim=1)
|
| 134 |
-
|
| 135 |
-
runner.config.diffusion.cfg.scale = cfg_scale
|
| 136 |
-
runner.config.diffusion.cfg.rescale = cfg_rescale
|
| 137 |
-
runner.config.diffusion.timesteps.sampling.steps = sample_steps
|
| 138 |
-
runner.configure_diffusion()
|
| 139 |
-
|
| 140 |
-
set_seed(seed % (2**32), same_across_ranks=True)
|
| 141 |
-
os.makedirs('output/', exist_ok=True)
|
| 142 |
-
|
| 143 |
-
original_videos_local = [[os.path.basename(video_path)]]
|
| 144 |
-
positive_prompts_embeds = _extract_text_embeds()
|
| 145 |
-
|
| 146 |
-
video_transform = Compose([
|
| 147 |
-
NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False),
|
| 148 |
-
Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
|
| 149 |
-
DivisibleCrop((16, 16)),
|
| 150 |
-
Normalize(0.5, 0.5),
|
| 151 |
-
Rearrange("t c h w -> c t h w"),
|
| 152 |
-
])
|
| 153 |
-
|
| 154 |
-
for videos, text_embeds in tqdm(zip(original_videos_local, positive_prompts_embeds)):
|
| 155 |
-
cond_latents = []
|
| 156 |
-
media_type, _ = mimetypes.guess_type(video_path)
|
| 157 |
-
is_image = media_type and media_type.startswith("image")
|
| 158 |
-
is_video = media_type and media_type.startswith("video")
|
| 159 |
-
|
| 160 |
-
if is_video:
|
| 161 |
-
video_frames = read_video(video_path, output_format="TCHW")[0] / 255.0
|
| 162 |
-
if video_frames.size(0) > 121: video_frames = video_frames[:121]
|
| 163 |
-
output_filename = str(uuid.uuid4()) + '.mp4'
|
| 164 |
-
elif is_image:
|
| 165 |
-
img = Image.open(video_path).convert("RGB")
|
| 166 |
-
video_frames = T.ToTensor()(img).unsqueeze(0)
|
| 167 |
-
output_filename = str(uuid.uuid4()) + '.png'
|
| 168 |
-
else:
|
| 169 |
-
raise gr.Error("Formato de arquivo não suportado. Use vídeo ou imagem.")
|
| 170 |
-
|
| 171 |
-
output_dir = os.path.join('output', output_filename)
|
| 172 |
-
cond_latents.append(video_transform(video_frames.to(torch.device("cuda"))))
|
| 173 |
-
|
| 174 |
-
ori_lengths = [v.size(1) for v in cond_latents]
|
| 175 |
-
input_videos = cond_latents
|
| 176 |
-
if is_video: cond_latents = [cut_videos(v, sp_size) for v in cond_latents]
|
| 177 |
-
|
| 178 |
-
cond_latents = runner.vae_encode(cond_latents)
|
| 179 |
-
|
| 180 |
-
for i, emb in enumerate(text_embeds["texts_pos"]): text_embeds["texts_pos"][i] = emb.to(torch.device("cuda"))
|
| 181 |
-
for i, emb in enumerate(text_embeds["texts_neg"]): text_embeds["texts_neg"][i] = emb.to(torch.device("cuda"))
|
| 182 |
-
|
| 183 |
-
samples = generation_step(runner, text_embeds, cond_latents=cond_latents)
|
| 184 |
-
del cond_latents
|
| 185 |
-
|
| 186 |
-
for path, input_vid, sample, ori_length in zip(videos, input_videos, samples, ori_lengths):
|
| 187 |
-
if ori_length < sample.shape[0]: sample = sample[:ori_length]
|
| 188 |
-
input_vid = rearrange(input_vid, "c t h w -> t c h w")
|
| 189 |
-
if use_colorfix: sample = wavelet_reconstruction(sample.cpu(), input_vid[:sample.size(0)].cpu())
|
| 190 |
-
else: sample = sample.cpu()
|
| 191 |
-
|
| 192 |
-
sample = rearrange(sample, "t c h w -> t h w c")
|
| 193 |
-
sample = sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round().to(torch.uint8).numpy()
|
| 194 |
-
|
| 195 |
-
if is_image:
|
| 196 |
-
mediapy.write_image(output_dir, sample[0])
|
| 197 |
-
else:
|
| 198 |
-
mediapy.write_video(output_dir, sample, fps=fps_out)
|
| 199 |
-
|
| 200 |
-
gc.collect()
|
| 201 |
-
torch.cuda.empty_cache()
|
| 202 |
-
|
| 203 |
-
# Retorna os valores para os componentes corretos da UI
|
| 204 |
-
if is_image:
|
| 205 |
-
return output_dir, None, output_dir
|
| 206 |
-
else:
|
| 207 |
-
return None, output_dir, output_dir
|
| 208 |
-
|
| 209 |
-
# --- Interface Gradio ---
|
| 210 |
-
with gr.Blocks(title="SeedVR2: One-Step Video Restoration") as demo:
|
| 211 |
-
gr.HTML(...) # Mantido como no original
|
| 212 |
-
|
| 213 |
-
with gr.Row():
|
| 214 |
-
# CORRIGIDO: gr.File para gr.Video, que passa um 'filepath' por padrão
|
| 215 |
-
input_file = gr.Video(label="Upload image or video")
|
| 216 |
-
seed = gr.Number(label="Seeds", value=666)
|
| 217 |
-
fps = gr.Number(label="fps", value=24)
|
| 218 |
-
|
| 219 |
-
with gr.Row():
|
| 220 |
-
output_image = gr.Image(label="Output_Image")
|
| 221 |
-
output_video = gr.Video(label="Output_Video")
|
| 222 |
-
download_link = gr.File(label="Download the output")
|
| 223 |
-
|
| 224 |
-
run_button = gr.Button("Run")
|
| 225 |
-
run_button.click(
|
| 226 |
-
fn=generation_loop,
|
| 227 |
-
inputs=[input_file, seed, fps],
|
| 228 |
-
outputs=[output_image, output_video, download_link]
|
| 229 |
-
)
|
| 230 |
-
|
| 231 |
-
gr.Examples(...) # Mantido como no original
|
| 232 |
-
gr.HTML(...) # Mantido como no original
|
| 233 |
-
|
| 234 |
-
demo.queue(max_size=10)
|
| 235 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|