akhaliq's picture
akhaliq HF Staff
Update app.py
7f9da48 verified
import gradio as gr
import torch
from transformers import AutoModelForCausalLM
from PIL import Image
import numpy as np
from io import BytesIO
import spaces
# Initialize model globally
model = None
def load_model():
global model
if model is None:
model = AutoModelForCausalLM.from_pretrained(
"moondream/moondream3-preview",
trust_remote_code=True,
dtype=torch.bfloat16,
device_map={"": "cuda"},
)
model.compile()
return model
@spaces.GPU(duration=120)
def process_image(image, task, question, caption_length, object_query, reasoning, temperature, top_p, max_tokens):
model = load_model()
settings = {
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_tokens
}
results = []
if task == "Query":
if image is not None:
result = model.query(
image=Image.fromarray(image),
question=question,
reasoning=reasoning,
settings=settings
)
return result["answer"], None, None
else:
result = model.query(
question=question,
reasoning=reasoning,
settings=settings
)
return result["answer"], None, None
elif task == "Caption":
if image is None:
return "Please upload an image for captioning", None, None
result = model.caption(
Image.fromarray(image),
length=caption_length.lower(),
settings=settings
)
return result["caption"], None, None
elif task == "Point":
if image is None:
return "Please upload an image for point detection", None, None
result = model.point(Image.fromarray(image), object_query)
# Visualize points on image
img_with_points = image.copy()
h, w = img_with_points.shape[:2]
points_text = "Points found:\n"
for i, point in enumerate(result.get("points", [])):
x = int(point['x'] * w)
y = int(point['y'] * h)
# Draw a red circle at each point
cv2_available = False
try:
import cv2
cv2.circle(img_with_points, (x, y), 10, (255, 0, 0), -1)
cv2_available = True
except:
# Fallback to numpy if cv2 not available
for dx in range(-5, 6):
for dy in range(-5, 6):
if dx*dx + dy*dy <= 25: # Circle with radius 5
px, py = x + dx, y + dy
if 0 <= px < w and 0 <= py < h:
img_with_points[py, px] = [255, 0, 0]
points_text += f"Point {i+1}: x={point['x']:.3f}, y={point['y']:.3f}\n"
return points_text, img_with_points, None
elif task == "Detect":
if image is None:
return "Please upload an image for object detection", None, None
detect_settings = settings.copy()
detect_settings["max_objects"] = 10
result = model.detect(Image.fromarray(image), object_query, settings=detect_settings)
# Visualize bounding boxes
img_with_boxes = image.copy()
h, w = img_with_boxes.shape[:2]
boxes_text = "Objects detected:\n"
for i, obj in enumerate(result.get("objects", [])):
x_min = int(obj['x_min'] * w)
y_min = int(obj['y_min'] * h)
x_max = int(obj['x_max'] * w)
y_max = int(obj['y_max'] * h)
# Draw bounding box
thickness = 3
# Top and bottom borders
img_with_boxes[y_min:y_min+thickness, x_min:x_max] = [0, 255, 0]
img_with_boxes[y_max-thickness:y_max, x_min:x_max] = [0, 255, 0]
# Left and right borders
img_with_boxes[y_min:y_max, x_min:x_min+thickness] = [0, 255, 0]
img_with_boxes[y_min:y_max, x_max-thickness:x_max] = [0, 255, 0]
boxes_text += f"Object {i+1}: x_min={obj['x_min']:.3f}, y_min={obj['y_min']:.3f}, x_max={obj['x_max']:.3f}, y_max={obj['y_max']:.3f}\n"
return boxes_text, None, img_with_boxes
with gr.Blocks(title="Moondream 3 Preview", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# 🌙 Moondream 3 Preview - Vision Language Model
Experience the power of Moondream 3, a state-of-the-art vision language model with mixture-of-experts architecture.
This demo showcases all four skills: Query, Caption, Point, and Detect.
[Built with anycoder](https://huggingface.co/spaces/akhaliq/anycoder)
"""
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Upload Image (optional for Query)", type="numpy")
task_type = gr.Radio(
choices=["Query", "Caption", "Point", "Detect"],
value="Query",
label="Select Task"
)
with gr.Column(visible=True) as query_options:
question_input = gr.Textbox(
label="Question",
placeholder="Ask anything about the image or enter a text-only question",
lines=2
)
reasoning_toggle = gr.Checkbox(
label="Enable Reasoning (better for complex questions)",
value=True
)
with gr.Column(visible=False) as caption_options:
caption_length = gr.Radio(
choices=["Short", "Normal", "Long"],
value="Normal",
label="Caption Length"
)
with gr.Column(visible=False) as point_detect_options:
object_query_input = gr.Textbox(
label="Object to Find",
placeholder="e.g., 'person wearing red shirt', 'car', 'dog'",
lines=1
)
gr.Markdown("### Advanced Settings")
with gr.Accordion("Generation Parameters", open=False):
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p"
)
max_tokens = gr.Slider(
minimum=50,
maximum=2048,
value=512,
step=50,
label="Max Tokens"
)
submit_btn = gr.Button("🚀 Process", variant="primary")
with gr.Column(scale=1):
output_text = gr.Textbox(
label="Output",
lines=10,
show_copy_button=True
)
output_image_points = gr.Image(
label="Visualization (Points)",
visible=False
)
output_image_boxes = gr.Image(
label="Visualization (Bounding Boxes)",
visible=False
)
def update_interface(task):
return {
query_options: gr.Column(visible=(task == "Query")),
caption_options: gr.Column(visible=(task == "Caption")),
point_detect_options: gr.Column(visible=(task in ["Point", "Detect"])),
output_image_points: gr.Image(visible=False),
output_image_boxes: gr.Image(visible=False)
}
def process_and_update_visibility(image, task, question, caption_length, object_query, reasoning, temperature, top_p, max_tokens):
text_output, points_img, boxes_img = process_image(
image, task, question, caption_length, object_query, reasoning,
temperature, top_p, max_tokens
)
return {
output_text: text_output,
output_image_points: gr.Image(value=points_img, visible=(points_img is not None)),
output_image_boxes: gr.Image(value=boxes_img, visible=(boxes_img is not None))
}
task_type.change(
update_interface,
inputs=[task_type],
outputs=[query_options, caption_options, point_detect_options, output_image_points, output_image_boxes]
)
submit_btn.click(
process_and_update_visibility,
inputs=[
input_image, task_type, question_input, caption_length,
object_query_input, reasoning_toggle, temperature, top_p, max_tokens
],
outputs=[output_text, output_image_points, output_image_boxes]
)
gr.Examples(
examples=[
[None, "Query", "Explain the concept of neural networks", "Normal", "", True, 0.7, 0.95, 512],
[None, "Query", "What is the capital of France?", "Normal", "", False, 0.3, 0.95, 256],
],
inputs=[
input_image, task_type, question_input, caption_length,
object_query_input, reasoning_toggle, temperature, top_p, max_tokens
],
label="Example Queries"
)
gr.Markdown(
"""
### About Moondream 3
- **Architecture**: 9B total parameters, 2B active, with mixture-of-experts
- **Skills**: Query (Q&A), Caption, Point detection, Object detection
- **Features**: 32K context length, multi-crop high resolution processing
- **Model**: [moondream/moondream3-preview](https://huggingface.co/moondream/moondream3-preview)
### Tips:
- **Query**: Ask open-ended questions about images or use for text-only tasks
- **Caption**: Generate short, normal, or long descriptions of images
- **Point**: Find specific objects and get their coordinates
- **Detect**: Get bounding boxes for objects in images
- Enable reasoning for complex visual understanding tasks
"""
)
demo.launch()