Spaces:
Paused
Paused
File size: 26,445 Bytes
c50111a c3cd30b f09a9f1 a77e2f8 f09a9f1 a77e2f8 9e9fcb3 a77e2f8 9e9fcb3 e495372 8625bf9 9e9fcb3 2ac0b71 9e9fcb3 2ac0b71 9e9fcb3 2ac0b71 9e9fcb3 2ac0b71 9e9fcb3 2ac0b71 9e9fcb3 2ac0b71 9e9fcb3 2ac0b71 9e9fcb3 2a8d8c0 9e9fcb3 e495372 f09a9f1 9e9fcb3 f09a9f1 c30100c 9e9fcb3 c30100c 9e9fcb3 f09a9f1 c30100c 9e9fcb3 c30100c 9e9fcb3 f09a9f1 a77e2f8 9e9fcb3 a77e2f8 9e9fcb3 a77e2f8 c3cd30b 9e9fcb3 f09a9f1 2ac0b71 f09a9f1 9e9fcb3 c30100c 2ac0b71 c30100c 2a8d8c0 af8ce61 9e9fcb3 2ac0b71 f09a9f1 9e9fcb3 af8ce61 c30100c 9e9fcb3 2ac0b71 f09a9f1 9e9fcb3 c30100c f09a9f1 9e9fcb3 2ac0b71 2a8d8c0 9e9fcb3 c30100c 9e9fcb3 2ac0b71 af8ce61 9e9fcb3 c30100c 2ac0b71 f09a9f1 a77e2f8 9e9fcb3 a77e2f8 9e9fcb3 a77e2f8 9e9fcb3 f09a9f1 a77e2f8 9e9fcb3 a77e2f8 9e9fcb3 f09a9f1 c3cd30b a77e2f8 9e9fcb3 af8ce61 9e9fcb3 af8ce61 9e9fcb3 af8ce61 9e9fcb3 a77e2f8 9e9fcb3 a77e2f8 f09a9f1 a77e2f8 f09a9f1 9e9fcb3 a77e2f8 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 af8ce61 f09a9f1 af8ce61 f09a9f1 af8ce61 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 af8ce61 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 af8ce61 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 a77e2f8 9e9fcb3 a77e2f8 f09a9f1 a77e2f8 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 c3cd30b 9e9fcb3 a77e2f8 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 2ac0b71 f09a9f1 2ac0b71 f09a9f1 9e9fcb3 c3cd30b a77e2f8 9e9fcb3 a77e2f8 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 2ac0b71 f09a9f1 2ac0b71 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 2ac0b71 9e9fcb3 2ac0b71 9e9fcb3 f09a9f1 9e9fcb3 2ac0b71 9e9fcb3 2ac0b71 9e9fcb3 2ac0b71 9e9fcb3 2ac0b71 9e9fcb3 2ac0b71 9e9fcb3 f09a9f1 9e9fcb3 2ac0b71 9e9fcb3 f09a9f1 2ac0b71 f09a9f1 9e9fcb3 f09a9f1 2ac0b71 f09a9f1 2ac0b71 9e9fcb3 2ac0b71 9e9fcb3 f09a9f1 9e9fcb3 2ac0b71 9e9fcb3 2ac0b71 9e9fcb3 2ac0b71 9e9fcb3 2ac0b71 9e9fcb3 2ac0b71 9e9fcb3 f09a9f1 2ac0b71 f09a9f1 9e9fcb3 f09a9f1 2ac0b71 f09a9f1 9e9fcb3 2ac0b71 9e9fcb3 c3cd30b f09a9f1 9e9fcb3 f09a9f1 2ac0b71 9e9fcb3 f09a9f1 2ac0b71 f09a9f1 2ac0b71 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 c30100c f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 9e9fcb3 f09a9f1 e422165 f09a9f1 a77e2f8 9e9fcb3 a77e2f8 c3cd30b f09a9f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 |
try:
import spaces
SPACES_AVAILABLE = True
print("✅ Spaces available - ZeroGPU mode")
except ImportError:
SPACES_AVAILABLE = False
print("⚠️ Spaces not available - running in regular mode")
import gradio as gr
import torch
from diffusers import DiffusionPipeline, StableDiffusionXLPipeline
from PIL import Image
import datetime
import io
import json
import os
import re
from typing import Optional, List, Dict
import numpy as np
# ======================
# Configuration Section - 灵活模型配置
# ======================
# 1. 模型配置字典 - 支持多种模型类型
MODEL_CONFIGS = {
"pornmasterPro_noobV3VAE": {
"repo_id": "votepurchase/pornmasterPro_noobV3VAE",
"type": "sdxl", # SDXL架构
"requires_safety_checker": False,
"default_negative": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry",
"optimal_settings": {
"steps": 28,
"cfg": 7.0,
"sampler": "DPM++ 2M Karras"
},
"description": "pornmasterPro_noobV3VAE - High-quality NSFW Image generator"
},
"wai_nsfw_illustrious_v80": {
"repo_id": "John6666/wai-nsfw-illustrious-v80-sdxl",
"type": "sdxl", # SDXL架构
"requires_safety_checker": False,
"default_negative": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry",
"optimal_settings": {
"steps": 28,
"cfg": 7.0,
"sampler": "DPM++ 2M Karras"
},
"description": "WAI NSFW Illustrious v8.0 - High-quality illustration-style mockups"
},
"wai_nsfw_illustrious_v90": {
"repo_id": "John6666/wai-nsfw-illustrious-v90-sdxl",
"type": "sdxl",
"requires_safety_checker": False,
"default_negative": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry",
"optimal_settings": {
"steps": 28,
"cfg": 7.0,
"sampler": "DPM++ 2M Karras"
},
"description": "WAI NSFW Illustrious v9.0 - Latest version"
},
"wai_nsfw_illustrious_v110": {
"repo_id": "John6666/wai-nsfw-illustrious-v110-sdxl",
"type": "sdxl",
"requires_safety_checker": False,
"default_negative": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry",
"optimal_settings": {
"steps": 30,
"cfg": 7.5,
"sampler": "DPM++ 2M Karras"
},
"description": "WAI NSFW Illustrious v11.0 - Enhanced version"
},
"sdxl_base": {
"repo_id": "stabilityai/stable-diffusion-xl-base-1.0",
"type": "sdxl",
"requires_safety_checker": True,
"default_negative": "blurry, low quality, deformed, cartoon, anime, text, watermark, signature, username, worst quality, low res, bad anatomy, bad hands",
"optimal_settings": {
"steps": 30,
"cfg": 7.5,
"sampler": "Default"
},
"description": "Stable Diffusion XL Base 1.0 - Official base model"
},
"realistic_vision": {
"repo_id": "SG161222/RealVisXL_V4.0",
"type": "sdxl",
"requires_safety_checker": False,
"default_negative": "blurry, low quality, deformed, text, watermark, signature, worst quality, bad anatomy",
"optimal_settings": {
"steps": 30,
"cfg": 7.5,
"sampler": "Default"
},
"description": "RealVisXL V4.0 - High-quality realistic style"
},
"anime_xl": {
"repo_id": "Linaqruf/animagine-xl-3.1",
"type": "sdxl",
"requires_safety_checker": False,
"default_negative": "lowres, bad anatomy, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated",
"optimal_settings": {
"steps": 28,
"cfg": 7.0,
"sampler": "Default"
},
"description": "Animagine XL 3.1 - Anime style"
},
"juggernaut_xl": {
"repo_id": "RunDiffusion/Juggernaut-XL-v9",
"type": "sdxl",
"requires_safety_checker": False,
"default_negative": "blurry, low quality, text, watermark, signature, worst quality",
"optimal_settings": {
"steps": 30,
"cfg": 7.5,
"sampler": "Default"
},
"description": "Juggernaut XL v9 - Universal high-quality models"
}
}
# 默认使用的模型 - 可以通过UI切换
DEFAULT_MODEL_KEY = "pornmasterPro_noobV3VAE"
# 2. 固定LoRA配置 - 自动加载
FIXED_LORAS = {
"detail_enhancer": {
"repo_id": "ostris/ikea-instructions-lora-sdxl",
"filename": None,
"weight": 0.5, # 降低权重避免过度影响
"trigger_words": "high quality, detailed",
"enabled": True # 可以禁用
},
"quality_boost": {
"repo_id": "stabilityai/stable-diffusion-xl-offset-example-lora",
"filename": None,
"weight": 0.4,
"trigger_words": "masterpiece, best quality",
"enabled": True
}
}
# 3. 风格模板 - 根据不同模型优化
STYLE_PROMPTS = {
"None": "",
"Realistic Photo": "photorealistic, ultra-detailed, natural lighting, 8k uhd, professional photography, DSLR, high quality, masterpiece, ",
"Anime/Illustration": "anime style, high quality illustration, vibrant colors, detailed, masterpiece, best quality, ",
"Artistic Illustration": "artistic illustration, painterly, detailed artwork, high quality, professional illustration, ",
"Comic Book": "comic book style, bold lines, dynamic composition, pop art, high quality, ",
"Watercolor": "watercolor painting, soft brush strokes, artistic, traditional art, masterpiece, ",
"Cinematic": "cinematic lighting, dramatic atmosphere, film grain, professional color grading, high quality, ",
}
# 4. 可选LoRA配置 - 用户可选择
OPTIONAL_LORAS = {
"None": {
"repo_id": None,
"weight": 0.0,
"trigger_words": "",
"description": "No additional LoRA"
},
"Offset Noise": {
"repo_id": "stabilityai/stable-diffusion-xl-offset-example-lora",
"weight": 0.7,
"trigger_words": "high contrast, dramatic lighting",
"description": "Enhance contrast and lighting effects"
},
"LCM LoRA": {
"repo_id": "latent-consistency/lcm-lora-sdxl",
"weight": 0.8,
"trigger_words": "high quality",
"description": "Rapid Generation Mode"
},
"Pixel Art": {
"repo_id": "nerijs/pixel-art-xl",
"weight": 0.9,
"trigger_words": "pixel art style, 8bit, retro",
"description": "Pixel art style"
},
"Watercolor": {
"repo_id": "ostris/watercolor-style-lora-sdxl",
"weight": 0.8,
"trigger_words": "watercolor painting, soft colors",
"description": "Watercolor style"
},
"Sketch": {
"repo_id": "ostris/crayon-style-lora-sdxl",
"weight": 0.7,
"trigger_words": "sketch style, pencil drawing",
"description": "Sketch Style"
},
"Portrait": {
"repo_id": "ostris/face-helper-sdxl-lora",
"weight": 0.8,
"trigger_words": "portrait, beautiful face, detailed eyes",
"description": "Portrait and face enhancement"
}
}
# 默认参数
DEFAULT_SEED = -1
DEFAULT_WIDTH = 1024
DEFAULT_HEIGHT = 1024
DEFAULT_LORA_SCALE = 0.8
DEFAULT_STEPS = 28
DEFAULT_CFG = 7.0
# 支持的语言
SUPPORTED_LANGUAGES = {
"en": "English",
"zh": "中文",
"ja": "日本語",
"ko": "한국어"
}
# ======================
# 全局变量: 懒加载
# ======================
pipe = None
current_model_key = None
current_loras = {}
device = "cuda" if torch.cuda.is_available() else "cpu"
def load_pipeline(model_key: str = None):
"""灵活加载pipeline,支持不同模型"""
global pipe, current_model_key
if model_key is None:
model_key = DEFAULT_MODEL_KEY
# 如果模型已加载且是同一个,直接返回
if pipe is not None and current_model_key == model_key:
return pipe
# 卸载旧模型
if pipe is not None:
unload_pipeline()
model_config = MODEL_CONFIGS.get(model_key)
if not model_config:
raise ValueError(f"未知的模型配置: {model_key}")
print(f"🚀 加载模型: {model_config['description']} ({model_config['repo_id']})")
try:
# 加载SDXL类型的模型
if model_config["type"] == "sdxl":
pipe = StableDiffusionXLPipeline.from_pretrained(
model_config["repo_id"],
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
safety_checker=None if not model_config["requires_safety_checker"] else "default"
).to(device)
# 内存优化
pipe.enable_attention_slicing()
pipe.enable_vae_slicing()
if hasattr(pipe, 'enable_model_cpu_offload'):
pipe.enable_model_cpu_offload()
if hasattr(pipe, 'enable_xformers_memory_efficient_attention'):
try:
pipe.enable_xformers_memory_efficient_attention()
except:
print("⚠️ xformers不可用,跳过")
current_model_key = model_key
print(f"✅ 成功加载模型: {model_config['description']}")
return pipe
else:
raise ValueError(f"不支持的模型类型: {model_config['type']}")
except Exception as e:
print(f"❌ 加载模型失败: {e}")
# 尝试加载备用模型
if model_key != "sdxl_base":
print("🔄 尝试加载备用模型...")
return load_pipeline("sdxl_base")
else:
raise Exception("无法加载任何模型")
def unload_pipeline():
"""卸载pipeline释放内存"""
global pipe, current_loras, current_model_key
if pipe is not None:
try:
pipe.unload_lora_weights()
except:
pass
del pipe
torch.cuda.empty_cache()
pipe = None
current_loras = {}
current_model_key = None
print("🗑️ Pipeline已卸载")
def load_lora_weights(lora_configs: List[Dict]):
"""加载多个LoRA权重,带错误处理"""
global pipe, current_loras
if not lora_configs:
return
# 卸载现有LoRA
new_lora_ids = [config['repo_id'] for config in lora_configs if config['repo_id']]
if set(current_loras.keys()) != set(new_lora_ids):
try:
pipe.unload_lora_weights()
current_loras = {}
except:
pass
# 加载新LoRA
adapter_names = []
adapter_weights = []
for config in lora_configs:
if config['repo_id'] and config['repo_id'] not in current_loras:
try:
adapter_name = config['name'].replace(' ', '_').lower()
pipe.load_lora_weights(
config['repo_id'],
adapter_name=adapter_name
)
current_loras[config['repo_id']] = adapter_name
print(f"✅ 加载LoRA: {config['name']}")
except Exception as e:
print(f"⚠️ LoRA加载失败 {config['name']}: {e}")
continue
if config['repo_id'] in current_loras:
adapter_names.append(current_loras[config['repo_id']])
adapter_weights.append(config['weight'])
# 设置adapter权重
if adapter_names:
try:
pipe.set_adapters(adapter_names, adapter_weights=adapter_weights)
print(f"✅ 激活了 {len(adapter_names)} 个LoRA")
except Exception as e:
print(f"⚠️ 设置adapter权重警告: {e}")
try:
pipe.set_adapters(adapter_names)
except:
print("❌ 无法设置任何adapter")
def process_long_prompt(prompt: str, max_length: int = 77) -> str:
"""处理长提示词"""
if len(prompt.split()) <= max_length:
return prompt
sentences = re.split(r'[.!?]+', prompt)
sentences = [s.strip() for s in sentences if s.strip()]
if sentences:
result = sentences[0]
remaining = max_length - len(result.split())
for sentence in sentences[1:]:
words = sentence.split()
if len(words) <= remaining:
result += ". " + sentence
remaining -= len(words)
else:
important_words = [w for w in words if len(w) > 3][:remaining]
if important_words:
result += ". " + " ".join(important_words)
break
return result
return " ".join(prompt.split()[:max_length])
# ======================
# 主生成函数
# ======================
@spaces.GPU(duration=60) if SPACES_AVAILABLE else lambda x: x
def generate_image(
model_key: str,
prompt: str,
negative_prompt: str,
style: str,
seed: int,
width: int,
height: int,
selected_loras: List[str],
lora_scale: float,
steps: int,
cfg_scale: float,
use_fixed_loras: bool,
language: str = "en"
):
"""主图像生成函数,支持ZeroGPU优化"""
global pipe
try:
# 加载指定模型
pipe = load_pipeline(model_key)
model_config = MODEL_CONFIGS[model_key]
# 处理种子
if seed == -1:
seed = torch.randint(0, 2**32, (1,)).item()
generator = torch.Generator(device=device).manual_seed(seed)
# 处理提示词
style_prefix = STYLE_PROMPTS.get(style, "")
processed_prompt = process_long_prompt(style_prefix + prompt, max_length=150)
# 使用模型默认负面提示词(如果用户未提供)
if not negative_prompt.strip():
negative_prompt = model_config["default_negative"]
processed_negative = process_long_prompt(negative_prompt, max_length=100)
# 准备LoRA配置
lora_configs = []
active_trigger_words = []
# 添加固定LoRA(如果启用)
if use_fixed_loras:
for name, config in FIXED_LORAS.items():
if config["repo_id"] and config["enabled"]:
lora_configs.append({
'name': name,
'repo_id': config["repo_id"],
'weight': config["weight"]
})
if config["trigger_words"]:
active_trigger_words.append(config["trigger_words"])
# 添加用户选择的LoRA
for lora_name in selected_loras:
if lora_name != "None" and lora_name in OPTIONAL_LORAS:
config = OPTIONAL_LORAS[lora_name]
if config["repo_id"]:
lora_configs.append({
'name': lora_name,
'repo_id': config["repo_id"],
'weight': config["weight"] * lora_scale
})
if config["trigger_words"]:
active_trigger_words.append(config["trigger_words"])
# 加载LoRA
load_lora_weights(lora_configs)
# 组合触发词
if active_trigger_words:
trigger_text = ", ".join(active_trigger_words)
final_prompt = f"{processed_prompt}, {trigger_text}"
else:
final_prompt = processed_prompt
# 生成图像
with torch.autocast(device):
image = pipe(
prompt=final_prompt,
negative_prompt=processed_negative,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
).images[0]
# 生成元数据
timestamp = datetime.datetime.now()
metadata = {
"model": model_config["description"],
"model_repo": model_config["repo_id"],
"prompt": final_prompt,
"original_prompt": prompt,
"negative_prompt": processed_negative,
"style": style,
"fixed_loras_enabled": use_fixed_loras,
"fixed_loras": [name for name, config in FIXED_LORAS.items() if config["enabled"]] if use_fixed_loras else [],
"selected_loras": [name for name in selected_loras if name != "None"],
"lora_scale": lora_scale,
"seed": seed,
"steps": steps,
"cfg_scale": cfg_scale,
"width": width,
"height": height,
"language": language,
"timestamp": timestamp.isoformat(),
"trigger_words": active_trigger_words
}
metadata_str = json.dumps(metadata, indent=2, ensure_ascii=False)
return (
image,
metadata_str,
f"✅ Generate successfully! Seed: {seed}"
)
except Exception as e:
error_msg = f"Build Failure: {str(e)}"
print(f"❌ {error_msg}")
return None, error_msg, error_msg
# ======================
# Gradio界面
# ======================
def create_interface():
"""创建Gradio界面"""
with gr.Blocks(
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="purple",
neutral_hue="slate",
),
css="""
.model-card {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 20px;
border-radius: 12px;
color: white;
margin-bottom: 20px;
}
.control-section {
background: rgba(255,255,255,0.05);
border-radius: 12px;
padding: 15px;
margin: 10px 0;
}
""",
title="AI Image Generator - Illustrious XL Multi-model version"
) as demo:
gr.Markdown("""
# 🎨 AI Image Generator - Illustrious XL Multi-Model Edition
### Flexible switching between multiple SDXL models | Flexible LoRa combinations | Optimized parameter configuration
""", elem_classes=["model-card"])
with gr.Row():
# 左侧 - 控制面板
with gr.Column(scale=3):
# 模型选择
with gr.Group(elem_classes=["control-section"]):
gr.Markdown("### 📦 Model selection")
model_dropdown = gr.Dropdown(
choices=[(config["description"], key) for key, config in MODEL_CONFIGS.items()],
value=DEFAULT_MODEL_KEY,
label="Basic Model",
info="Choose different models to get different styles"
)
model_info = gr.Markdown(MODEL_CONFIGS[DEFAULT_MODEL_KEY]["description"])
# 提示词输入
with gr.Group(elem_classes=["control-section"]):
gr.Markdown("### ✍️ Prompt")
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Describe the image you want to generate...",
lines=4,
max_lines=20
)
negative_prompt_input = gr.Textbox(
label="Negative Prompt(Leave blank to use the model default)",
placeholder="The recommended negative prompt words of the selected model will be automatically used...",
lines=3,
max_lines=15
)
style_radio = gr.Radio(
choices=list(STYLE_PROMPTS.keys()),
label="Style Template",
value="None",
info="Will be automatically added before the prompt word"
)
# 基础参数
with gr.Group(elem_classes=["control-section"]):
gr.Markdown("### ⚙️ Basic Parameters")
with gr.Row():
seed_input = gr.Slider(
minimum=-1,
maximum=99999999,
step=1,
value=DEFAULT_SEED,
label="Seed (-1=Random)"
)
with gr.Row():
width_input = gr.Slider(
minimum=512,
maximum=1536,
step=64,
value=DEFAULT_WIDTH,
label="Width"
)
height_input = gr.Slider(
minimum=512,
maximum=1536,
step=64,
value=DEFAULT_HEIGHT,
label="High"
)
with gr.Row():
steps_slider = gr.Slider(
minimum=10,
maximum=100,
step=1,
value=DEFAULT_STEPS,
label="Sampling Steps"
)
cfg_slider = gr.Slider(
minimum=1.0,
maximum=20.0,
step=0.5,
value=DEFAULT_CFG,
label="CFG Scale"
)
# LoRA配置
with gr.Group(elem_classes=["control-section"]):
gr.Markdown("### 🎭 LoRA Configuration")
use_fixed_loras = gr.Checkbox(
label="Fixed LoRA enhancement (quality + details)",
value=True,
info="Automatically load quality and detail enhancements for LoRA"
)
lora_dropdown = gr.Dropdown(
choices=list(OPTIONAL_LORAS.keys()),
label="Additional LoRA (multiple selections possible)",
value=["None"],
multiselect=True,
info="Select additional styles LoRA"
)
lora_scale_slider = gr.Slider(
minimum=0.0,
maximum=1.5,
step=0.05,
value=DEFAULT_LORA_SCALE,
label="LoRA Strength"
)
# 生成按钮
generate_btn = gr.Button(
"✨ Generat",
variant="primary",
size="lg"
)
status_text = gr.Textbox(
label="Status",
value="Ready",
interactive=False
)
# 右侧 - 输出
with gr.Column(scale=2):
image_output = gr.Image(
label="Generated image",
height=600,
format="webp"
)
gr.Markdown("**Right click on the image to download**")
metadata_output = gr.Textbox(
label="Generated metadata",
lines=15,
max_lines=25
)
# ======================
# 事件处理
# ======================
# 模型切换时更新信息
def update_model_info(model_key):
config = MODEL_CONFIGS[model_key]
info = f"""
**模型:** {config['description']}
**仓库:** `{config['repo_id']}`
**推荐设置:** 步数={config['optimal_settings']['steps']}, CFG={config['optimal_settings']['cfg']}
"""
return (
info,
config['optimal_settings']['steps'],
config['optimal_settings']['cfg'],
config['default_negative']
)
model_dropdown.change(
fn=update_model_info,
inputs=[model_dropdown],
outputs=[model_info, steps_slider, cfg_slider, negative_prompt_input]
)
# 生成按钮
generate_btn.click(
fn=generate_image,
inputs=[
model_dropdown, prompt_input, negative_prompt_input, style_radio,
seed_input, width_input, height_input,
lora_dropdown, lora_scale_slider,
steps_slider, cfg_slider, use_fixed_loras,
gr.Textbox(value="zh", visible=False)
],
outputs=[
image_output, metadata_output, status_text
]
)
return demo
# ======================
# 启动应用
# ======================
if __name__ == "__main__":
demo = create_interface()
demo.queue(max_size=20)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |