Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import warnings | |
| import torch | |
| from typing import Optional, Tuple | |
| try: | |
| import flash_attn_interface | |
| FLASH_ATTN_3_AVAILABLE = True | |
| except ModuleNotFoundError: | |
| FLASH_ATTN_3_AVAILABLE = False | |
| try: | |
| import flash_attn | |
| FLASH_ATTN_2_AVAILABLE = True | |
| except ModuleNotFoundError: | |
| FLASH_ATTN_2_AVAILABLE = False | |
| __all__ = [ | |
| 'flash_attention', | |
| 'attention', | |
| ] | |
| # --------------------------- | |
| # Custom op + fake kernel | |
| # --------------------------- | |
| from typing import Optional, Sequence # <- add Sequence | |
| # ... imports unchanged ... | |
| from typing import Optional, Sequence | |
| def _wan_flash_attention_op( | |
| q: torch.Tensor, | |
| k: torch.Tensor, | |
| v: torch.Tensor, | |
| q_lens: Optional[torch.Tensor] = None, | |
| k_lens: Optional[torch.Tensor] = None, | |
| dropout_p: float = 0.0, | |
| softmax_scale: Optional[float] = None, | |
| q_scale: Optional[float] = None, | |
| causal: bool = False, | |
| # IMPORTANT: schema-friendly default (None), not a tuple | |
| window_size: Optional[Sequence[int]] = None, | |
| deterministic: bool = False, | |
| dtype: torch.dtype = torch.bfloat16, | |
| version: Optional[int] = None, | |
| ) -> torch.Tensor: | |
| half_dtypes = (torch.float16, torch.bfloat16) | |
| assert dtype in half_dtypes | |
| assert q.size(-1) <= 256 | |
| # normalize window_size to a 2-tuple for FA2 API | |
| if window_size is None: | |
| ws = (-1, -1) | |
| else: | |
| ws = tuple(window_size) | |
| if len(ws) != 2: | |
| raise ValueError(f"window_size must have length 2; got {window_size!r}") | |
| b, lq, nheads = q.shape[0], q.shape[1], q.shape[2] | |
| lk = k.shape[1] | |
| out_dtype = q.dtype | |
| def half(x: torch.Tensor) -> torch.Tensor: | |
| return x if x.dtype in half_dtypes else x.to(dtype) | |
| # --- preprocess (unchanged) --- | |
| if q_lens is None: | |
| q_flat = half(q.flatten(0, 1)) | |
| q_lens = torch.tensor([lq] * b, dtype=torch.int32) | |
| else: | |
| q_flat = half(torch.cat([u[:v] for u, v in zip(q, q_lens)])) | |
| if k_lens is None: | |
| k_flat = half(k.flatten(0, 1)) | |
| v_flat = half(v.flatten(0, 1)) | |
| k_lens = torch.tensor([lk] * b, dtype=torch.int32) | |
| else: | |
| k_flat = half(torch.cat([u[:v] for u, v in zip(k, k_lens)])) | |
| v_flat = half(torch.cat([u[:v] for u, v in zip(v, k_lens)])) | |
| q_flat = q_flat.to(v_flat.dtype); k_flat = k_flat.to(v_flat.dtype) | |
| if q_scale is not None: | |
| q_flat = q_flat * q_scale | |
| if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE: | |
| warnings.warn('Flash attention 3 is not available, use flash attention 2 instead.') | |
| if FLASH_ATTN_3_AVAILABLE: | |
| ret = flash_attn_interface.flash_attn_varlen_func( | |
| q=q_flat, | |
| k=k_flat, | |
| v=v_flat, | |
| cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q_flat.device, non_blocking=True), | |
| cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(k_flat.device, non_blocking=True), | |
| seqused_q=None, | |
| seqused_k=None, | |
| max_seqlen_q=lq, | |
| max_seqlen_k=lk, | |
| softmax_scale=softmax_scale, | |
| causal=causal, | |
| deterministic=deterministic, | |
| ) | |
| out0 = ret[0] if isinstance(ret, (tuple, list)) else ret | |
| total_q = b * lq | |
| if out0.dim() != 3: | |
| raise RuntimeError(f"Unexpected FA3 output rank {out0.dim()} shape={tuple(out0.shape)}") | |
| if out0.shape[0] == total_q: | |
| out_flat = out0 | |
| elif out0.shape[0] == nheads and out0.shape[1] == total_q: | |
| out_flat = out0.transpose(0, 1).contiguous() | |
| else: | |
| raise RuntimeError(f"Unexpected FA3 output shape {tuple(out0.shape)}") | |
| out = out_flat.unflatten(0, (b, lq)) | |
| elif FLASH_ATTN_2_AVAILABLE: | |
| out = flash_attn.flash_attn_varlen_func( | |
| q=q_flat, | |
| k=k_flat, | |
| v=v_flat, | |
| cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32).to(q_flat.device, non_blocking=True), | |
| cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32).to(q_flat.device, non_blocking=True), | |
| max_seqlen_q=lq, | |
| max_seqlen_k=lk, | |
| dropout_p=dropout_p, | |
| softmax_scale=softmax_scale, | |
| causal=causal, | |
| window_size=ws, # <- pass 2-tuple | |
| deterministic=deterministic, | |
| ).unflatten(0, (b, lq)) | |
| else: | |
| q_s = q.transpose(1, 2).to(dtype) | |
| k_s = k.transpose(1, 2).to(dtype) | |
| v_s = v.transpose(1, 2).to(dtype) | |
| out = torch.nn.functional.scaled_dot_product_attention( | |
| q_s, k_s, v_s, attn_mask=None, is_causal=causal, dropout_p=dropout_p | |
| ).transpose(1, 2).contiguous() | |
| return out.to(out_dtype) | |
| def _wan_flash_attention_op_fake( | |
| q, | |
| k, | |
| v, | |
| q_lens=None, | |
| k_lens=None, | |
| dropout_p: float = 0.0, | |
| softmax_scale=None, | |
| q_scale=None, | |
| causal: bool = False, | |
| window_size: Optional[Sequence[int]] = None, | |
| deterministic: bool = False, | |
| dtype: torch.dtype = torch.bfloat16, | |
| version: Optional[int] = None, | |
| ): | |
| # Match output shape: (B, Lq, Nq, Dh_v) and keep the SAME fake device as `q` | |
| B, Lq, Nq, _ = q.shape | |
| Dh_v = v.shape[-1] | |
| return q.new_empty((B, Lq, Nq, Dh_v), dtype=q.dtype) | |
| # --------------------------- | |
| # Public API (unchanged signature) | |
| # --------------------------- | |
| def flash_attention( | |
| q, | |
| k, | |
| v, | |
| q_lens=None, | |
| k_lens=None, | |
| dropout_p=0., | |
| softmax_scale=None, | |
| q_scale=None, | |
| causal=False, | |
| window_size=(-1, -1), | |
| deterministic=False, | |
| dtype=torch.bfloat16, | |
| version=None, | |
| ): | |
| """ | |
| q: [B, Lq, Nq, C1]. | |
| k: [B, Lk, Nk, C1]. | |
| v: [B, Lk, Nk, C2]. Nq must be divisible by Nk. | |
| q_lens: [B]. | |
| k_lens: [B]. | |
| dropout_p: float. Dropout probability. | |
| softmax_scale: float. The scaling of QK^T before applying softmax. | |
| causal: bool. Whether to apply causal attention mask. | |
| window_size: (left right). If not (-1, -1), apply sliding window local attention. | |
| deterministic: bool. If True, slightly slower and uses more memory. | |
| dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16. | |
| """ | |
| # Simply delegate to the custom op so Dynamo/AOT treats it as a single node; | |
| # our eager kernel inside _wan_flash_attention_op keeps the original behavior. | |
| return _wan_flash_attention_op( | |
| q, k, v, | |
| q_lens=q_lens, | |
| k_lens=k_lens, | |
| dropout_p=dropout_p, | |
| softmax_scale=softmax_scale, | |
| q_scale=q_scale, | |
| causal=causal, | |
| window_size=window_size, | |
| deterministic=deterministic, | |
| dtype=dtype, | |
| version=version, | |
| ) | |
| def attention( | |
| q, | |
| k, | |
| v, | |
| q_lens=None, | |
| k_lens=None, | |
| dropout_p=0., | |
| softmax_scale=None, | |
| q_scale=None, | |
| causal=False, | |
| window_size=(-1, -1), | |
| deterministic=False, | |
| dtype=torch.bfloat16, | |
| fa_version=None, | |
| ): | |
| if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE: | |
| return flash_attention( | |
| q=q, | |
| k=k, | |
| v=v, | |
| q_lens=q_lens, | |
| k_lens=k_lens, | |
| dropout_p=dropout_p, | |
| softmax_scale=softmax_scale, | |
| q_scale=q_scale, | |
| causal=causal, | |
| window_size=window_size, | |
| deterministic=deterministic, | |
| dtype=dtype, | |
| version=fa_version, | |
| ) | |
| else: | |
| if q_lens is not None or k_lens is not None: | |
| warnings.warn( | |
| 'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.' | |
| ) | |
| q_ = q.transpose(1, 2).to(dtype) | |
| k_ = k.transpose(1, 2).to(dtype) | |
| v_ = v.transpose(1, 2).to(dtype) | |
| out = torch.nn.functional.scaled_dot_product_attention( | |
| q_, k_, v_, attn_mask=None, is_causal=causal, dropout_p=dropout_p | |
| ) | |
| return out.transpose(1, 2).contiguous() | |