Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,162 Bytes
e22a58e 3c1f2a9 08f8861 9c3c7f1 edb1292 e22a58e edb1292 3c1f2a9 e22a58e 3c1f2a9 5f61a8c 3c1f2a9 e22a58e 3c1f2a9 e22a58e 3c1f2a9 e22a58e 3c1f2a9 e22a58e 3c1f2a9 e22a58e 3c1f2a9 e22a58e 3c1f2a9 e22a58e 3c1f2a9 e22a58e 3c1f2a9 e22a58e 9c3c7f1 3c1f2a9 e22a58e 3c1f2a9 e22a58e 3c1f2a9 e22a58e 3c1f2a9 e22a58e 3c1f2a9 e22a58e 3c1f2a9 e22a58e 3c1f2a9 e22a58e 3c1f2a9 e22a58e 3c1f2a9 e22a58e 3c1f2a9 e22a58e 3c1f2a9 e22a58e edb1292 7108aaf 9c3c7f1 e22a58e 3c1f2a9 e22a58e 9c3c7f1 3c1f2a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# ---------- MUST BE FIRST: Gradio CDN + ZeroGPU probe ----------
import os
os.environ.setdefault("GRADIO_USE_CDN", "true")
import spaces
@spaces.GPU(duration=10)
def _gpu_probe(a: int = 1, b: int = 1) -> int:
# Never called; exists so ZeroGPU startup check passes.
return a + b
# ---------- Standard imports ----------
from pathlib import Path
from typing import Optional, Tuple, List
import subprocess
import sys
import traceback
import gradio as gr
import numpy as np
import soundfile as sf
from huggingface_hub import hf_hub_download
# ---------- Config ----------
SPACE_ROOT = Path(__file__).parent.resolve()
REPO_DIR = SPACE_ROOT / "SonicMasterRepo"
REPO_URL = "https://github.com/AMAAI-Lab/SonicMaster"
WEIGHTS_REPO = "amaai-lab/SonicMaster"
WEIGHTS_FILE = "model.safetensors"
CACHE_DIR = SPACE_ROOT / "weights"
CACHE_DIR.mkdir(parents=True, exist_ok=True)
# ZeroGPU detection (heuristic)
USE_ZEROGPU = os.getenv("SPACE_RUNTIME", "").lower() == "zerogpu"
# ---------- Lazy resources ----------
_weights_path: Optional[Path] = None
_repo_ready: bool = False
def get_weights_path(progress: Optional[gr.Progress] = None) -> Path:
"""Fetch model weights lazily and cache the resolved path."""
global _weights_path
if _weights_path is None:
if progress:
progress(0.10, desc="Downloading model weights (first run)")
wp = hf_hub_download(
repo_id=WEIGHTS_REPO,
filename=WEIGHTS_FILE,
local_dir=str(CACHE_DIR),
local_dir_use_symlinks=False,
force_download=False,
resume_download=True,
)
_weights_path = Path(wp)
return _weights_path
def ensure_repo(progress: Optional[gr.Progress] = None) -> Path:
"""Clone the inference repo lazily and put it on sys.path."""
global _repo_ready
if not _repo_ready:
if not REPO_DIR.exists():
if progress:
progress(0.18, desc="Cloning SonicMaster repo (first run)")
subprocess.run(
["git", "clone", "--depth", "1", REPO_URL, REPO_DIR.as_posix()],
check=True,
)
if REPO_DIR.as_posix() not in sys.path:
sys.path.append(REPO_DIR.as_posix())
_repo_ready = True
return REPO_DIR
# ---------- Audio helpers ----------
def save_temp_wav(wav: np.ndarray, sr: int, path: Path):
# Ensure (N, C) shape for soundfile
if wav.ndim == 1:
data = wav
else:
# (channels, samples) -> (samples, channels)
data = wav.T if wav.shape[0] < wav.shape[1] else wav
if data.dtype == np.float64:
data = data.astype(np.float32)
sf.write(path.as_posix(), data, sr)
def read_audio(path: str) -> Tuple[np.ndarray, int]:
wav, sr = sf.read(path, always_2d=False)
if wav.dtype == np.float64:
wav = wav.astype(np.float32)
return wav, sr
# ---------- CLI runner ----------
def _candidate_commands(py: str, script: Path, ckpt: Path, inp: Path, prompt: str, out: Path) -> List[List[str]]:
"""Try multiple arg styles commonly found in repos."""
combos = [
# infer_single.py (common)
[py, script.as_posix(), "--ckpt", ckpt.as_posix(), "--input", inp.as_posix(), "--prompt", prompt, "--output", out.as_posix()],
[py, script.as_posix(), "--weights", ckpt.as_posix(), "--input", inp.as_posix(), "--text", prompt, "--out", out.as_posix()],
# other possible entrypoints
[py, script.as_posix(), "--ckpt", ckpt.as_posix(), "--input", inp.as_posix(), "--text", prompt, "--output", out.as_posix()],
]
return combos
def run_sonicmaster_cli(
input_wav_path: Path,
prompt: str,
out_path: Path,
progress: Optional[gr.Progress] = None,
) -> Tuple[bool, str]:
"""
Returns (ok, message). Captures stderr/stdout and returns first non-empty output file.
"""
if progress:
progress(0.14, desc="Preparing inference")
ckpt = get_weights_path(progress=progress)
repo = ensure_repo(progress=progress)
# Candidate scripts to try
script_candidates = [
repo / "infer_single.py",
repo / "inference_fullsong.py",
repo / "inference_ptload_batch.py",
]
scripts = [s for s in script_candidates if s.exists()]
if not scripts:
return False, "No inference script found in the repo (expected infer_single.py or similar)."
py = sys.executable or "python3"
env = os.environ.copy() # keep CUDA_VISIBLE_DEVICES etc.
last_err = ""
for idx, script in enumerate(scripts, start=1):
for jdx, cmd in enumerate(_candidate_commands(py, script, ckpt, input_wav_path, prompt, out_path), start=1):
try:
if progress:
progress(min(0.20 + 0.08 * (idx + jdx), 0.70), desc=f"Running {script.name} (try {idx}.{jdx})")
res = subprocess.run(cmd, capture_output=True, text=True, check=True, env=env)
if out_path.exists() and out_path.stat().st_size > 0:
if progress:
progress(0.88, desc="Post-processing output")
# Return any informative stdout as message
msg = (res.stdout or "").strip()
return True, msg if msg else "Inference completed."
else:
last_err = f"{script.name} produced no output file."
except subprocess.CalledProcessError as e:
# Collect stderr/stdout for the user
snippet = "\n".join(filter(None, [e.stdout or "", e.stderr or ""])).strip()
last_err = snippet if snippet else f"{script.name} failed with return code {e.returncode}."
except Exception as e:
last_err = f"Unexpected error: {e}\n{traceback.format_exc()}"
return False, last_err or "All candidate commands failed without an error message."
# ---------- REAL GPU function (called only if using ZeroGPU / GPU available) ----------
@spaces.GPU(duration=180)
def enhance_on_gpu(input_path: str, prompt: str, output_path: str) -> Tuple[bool, str]:
try:
# Initialize CUDA inside the GPU context
import torch # noqa: F401
except Exception:
pass
from pathlib import Path as _P
return run_sonicmaster_cli(_P(input_path), prompt, _P(output_path), progress=None)
def _has_cuda() -> bool:
try:
import torch
return torch.cuda.is_available()
except Exception:
return False
# ---------- UI callback ----------
def enhance_audio_ui(
audio_path: str,
prompt: str,
progress=gr.Progress(track_tqdm=True),
) -> Tuple[Optional[Tuple[int, np.ndarray]], str]:
"""
Returns (audio, message). On failure, audio=None and message=error text.
"""
try:
if not prompt:
raise gr.Error("Please provide a text prompt.")
if not audio_path:
raise gr.Error("Please upload or select an input audio file.")
wav, sr = read_audio(audio_path)
tmp_in = SPACE_ROOT / "tmp_in.wav"
tmp_out = SPACE_ROOT / "tmp_out.wav"
if tmp_out.exists():
try:
tmp_out.unlink()
except Exception:
pass
if progress:
progress(0.06, desc="Preparing audio")
save_temp_wav(wav, sr, tmp_in)
# Choose execution path: prefer real GPU if available, else CPU
use_gpu_call = USE_ZEROGPU or _has_cuda()
if progress:
progress(0.12, desc="Starting inference")
if use_gpu_call:
ok, msg = enhance_on_gpu(tmp_in.as_posix(), prompt, tmp_out.as_posix())
else:
ok, msg = run_sonicmaster_cli(tmp_in, prompt, tmp_out, progress=progress)
if ok and tmp_out.exists() and tmp_out.stat().st_size > 0:
# Return output audio by filepath (lighter than big arrays)
# Gradio Audio accepts a (sr, np.ndarray) OR a file path; giving file path is fine.
return (None, f"Saved output: {tmp_out.name}\n{msg or ''}") if False else (read_audio(tmp_out.as_posix()), msg or "Done.")
else:
# On failure: DON'T echo input audio β return None and the error message
if not msg:
msg = "Inference failed without a specific error message."
return (None, msg.strip())
except gr.Error as e:
return (None, str(e))
except Exception as e:
return (None, f"Unexpected error: {e}\n{traceback.format_exc()}")
# ---------- Gradio UI ----------
PROMPT_EXAMPLES = [
["Increase the clarity of this song by emphasizing treble frequencies."],
["Make this song sound more boomy by amplifying the low end bass frequencies."],
["Make the audio smoother and less distorted."],
["Improve the balance in this song."],
["Reduce roominess/echo (dereverb)."],
["Raise the level of the vocals."],
["Give the song a wider stereo image."],
]
with gr.Blocks(title="SonicMaster β Text-Guided Restoration & Mastering", fill_height=True) as demo:
gr.Markdown("## π§ SonicMaster\nUpload audio, enter a prompt, then click **Enhance**.\n"
"- Progress appears below during the first run (weights/repo download).\n"
"- If something fails, you'll see the **error message** instead of the input audio.")
with gr.Row():
with gr.Column(scale=1):
in_audio = gr.Audio(label="Input Audio", type="filepath")
prompt = gr.Textbox(label="Text Prompt", placeholder="e.g., Reduce reverb and brighten the vocals.")
run_btn = gr.Button("π Enhance", variant="primary")
gr.Examples(
examples=PROMPT_EXAMPLES,
inputs=[prompt], # prompt-only examples to avoid heavy file ops at startup
label="Prompt Examples",
)
with gr.Column(scale=1):
out_audio = gr.Audio(label="Enhanced Audio (output)")
status = gr.Textbox(label="Status / Messages", interactive=False, lines=6)
# On click, return audio + message
run_btn.click(
fn=enhance_audio_ui,
inputs=[in_audio, prompt],
outputs=[out_audio, status],
concurrency_limit=1,
)
# Queue BEFORE mounting so the mounted app is ready immediately
demo = demo.queue(concurrency_count=1, max_size=16)
# ---------- FastAPI mount & health ----------
from fastapi import FastAPI, Request
from starlette.responses import PlainTextResponse
try:
from starlette.exceptions import ClientDisconnect # Starlette β₯0.27
except Exception:
from starlette.requests import ClientDisconnect # fallback for older versions
app = FastAPI()
@app.get("/health")
def _health():
return {"ok": True}
@app.exception_handler(ClientDisconnect)
async def client_disconnect_handler(request: Request, exc: ClientDisconnect):
return PlainTextResponse("Client disconnected", status_code=499)
# Mount Gradio at root (Spaces looks here)
app = gr.mount_gradio_app(app, demo, path="/")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |