SonicMaster / app.py
ambujm22's picture
Update app.py
c6d1d61 verified
raw
history blame
12.5 kB
# ========== MUST BE FIRST: Gradio SDK entry + ZeroGPU probes ==========
import os
os.environ.setdefault("GRADIO_USE_CDN", "true")
# Optional: 'spaces' present on Spaces; harmless to try locally.
try:
import spaces
except Exception:
class _DummySpaces:
def GPU(self, *_, **__):
def deco(fn): return fn
return deco
spaces = _DummySpaces()
# PUBLIC names so ZeroGPU supervisor can detect them
@spaces.GPU(duration=10)
def gpu_probe(a: int = 1, b: int = 1):
return a + b
@spaces.GPU(duration=10)
def gpu_echo(x: str = "ok"):
return x
# ========== Standard imports ==========
import sys
import subprocess
from pathlib import Path
from typing import Tuple, Optional, List, Dict, Any
import gradio as gr
import numpy as np
import soundfile as sf
from huggingface_hub import hf_hub_download
# ZeroGPU runtime hint (safe on CPU)
USE_ZEROGPU = os.getenv("SPACE_RUNTIME", "").lower() == "zerogpu"
SPACE_ROOT = Path(__file__).parent.resolve()
REPO_DIR = SPACE_ROOT / "SonicMasterRepo"
REPO_URL = "https://github.com/AMAAI-Lab/SonicMaster"
WEIGHTS_REPO = "amaai-lab/SonicMaster"
WEIGHTS_FILE = "model.safetensors"
CACHE_DIR = SPACE_ROOT / "weights"
CACHE_DIR.mkdir(parents=True, exist_ok=True)
# ========== Lazy resources (no heavy work at import) ==========
_weights_path: Optional[Path] = None
_repo_ready: bool = False
def get_weights_path(progress: Optional[gr.Progress] = None) -> Path:
"""Download/resolve weights lazily."""
global _weights_path
if _weights_path is None:
if progress: progress(0.10, desc="Downloading model weights (first run)")
wp = hf_hub_download(
repo_id=WEIGHTS_REPO,
filename=WEIGHTS_FILE,
local_dir=str(CACHE_DIR),
local_dir_use_symlinks=False,
force_download=False,
resume_download=True,
)
_weights_path = Path(wp)
return _weights_path
def ensure_repo(progress: Optional[gr.Progress] = None) -> Path:
"""Clone the repo lazily and add to sys.path."""
global _repo_ready
if not _repo_ready:
if not REPO_DIR.exists():
if progress: progress(0.18, desc="Cloning SonicMaster repo (first run)")
subprocess.run(
["git", "clone", "--depth", "1", REPO_URL, REPO_DIR.as_posix()],
check=True,
)
if REPO_DIR.as_posix() not in sys.path:
sys.path.append(REPO_DIR.as_posix())
_repo_ready = True
return REPO_DIR
# ========== Helpers ==========
def save_temp_wav(wav: np.ndarray, sr: int, path: Path):
# Ensure shape (samples, channels)
if wav.ndim == 2 and wav.shape[0] < wav.shape[1]:
wav = wav.T
if wav.dtype == np.float64:
wav = wav.astype(np.float32)
sf.write(path.as_posix(), wav, sr)
def read_audio(path: str) -> Tuple[np.ndarray, int]:
wav, sr = sf.read(path, always_2d=False)
if wav.dtype == np.float64:
wav = wav.astype(np.float32)
return wav, sr
def _candidate_commands(py: str, script: Path, ckpt: Path, inp: Path, prompt: str, out: Path) -> List[List[str]]:
# Try common flag layouts
return [
[py, script.as_posix(), "--ckpt", ckpt.as_posix(), "--input", inp.as_posix(), "--prompt", prompt, "--output", out.as_posix()],
[py, script.as_posix(), "--weights",ckpt.as_posix(), "--input", inp.as_posix(), "--text", prompt, "--out", out.as_posix()],
[py, script.as_posix(), "--ckpt", ckpt.as_posix(), "--input", inp.as_posix(), "--text", prompt, "--output", out.as_posix()],
]
def run_sonicmaster_cli(
input_wav_path: Path,
prompt: str,
out_path: Path,
progress: Optional[gr.Progress] = None,
) -> Tuple[bool, str]:
"""Run inference scripts via subprocess; return (ok, message)."""
if progress: progress(0.14, desc="Preparing inference")
ckpt = get_weights_path(progress=progress)
repo = ensure_repo(progress=progress)
candidates = [repo / "infer_single.py", repo / "inference_fullsong.py", repo / "inference_ptload_batch.py"]
scripts = [s for s in candidates if s.exists()]
if not scripts:
return False, "No inference script found in the repo (expected infer_single.py or similar)."
py = sys.executable or "python3"
env = os.environ.copy()
last_err = ""
for sidx, script in enumerate(scripts, 1):
for cidx, cmd in enumerate(_candidate_commands(py, script, ckpt, input_wav_path, prompt, out_path), 1):
try:
if progress:
progress(min(0.20 + 0.08 * (sidx + cidx), 0.70), desc=f"Running {script.name} (try {sidx}.{cidx})")
res = subprocess.run(cmd, capture_output=True, text=True, check=True, env=env)
if out_path.exists() and out_path.stat().st_size > 0:
if progress: progress(0.88, desc="Post-processing output")
return True, (res.stdout or "Inference completed.").strip()
last_err = f"{script.name} produced no output file."
except subprocess.CalledProcessError as e:
snippet = "\n".join(filter(None, [e.stdout or "", e.stderr or ""])).strip()
last_err = snippet if snippet else f"{script.name} failed with return code {e.returncode}."
except Exception as e:
import traceback
last_err = f"Unexpected error: {e}\n{traceback.format_exc()}"
return False, last_err or "All candidate commands failed."
# ========== GPU path (called only if ZeroGPU/GPU available) ==========
@spaces.GPU(duration=60)
def enhance_on_gpu(input_path: str, prompt: str, output_path: str) -> Tuple[bool, str]:
try:
import torch # noqa: F401
except Exception:
pass
from pathlib import Path as _P
return run_sonicmaster_cli(_P(input_path), prompt, _P(output_path), progress=None)
def _has_cuda() -> bool:
try:
import torch
return torch.cuda.is_available()
except Exception:
return False
# ========== Examples (lazy) ==========
PROMPTS_10 = [
"Increase the clarity of this song by emphasizing treble frequencies.",
"Make this song sound more boomy by amplifying the low end bass frequencies.",
"Can you make this sound louder, please?",
"Make the audio smoother and less distorted.",
"Improve the balance in this song.",
"Disentangle the left and right channels to give this song a stereo feeling.",
"Correct the unnatural frequency emphasis. Reduce the roominess or echo.",
"Raise the level of the vocals, please.",
"Increase the clarity of this song by emphasizing treble frequencies.",
"Please, dereverb this audio.",
]
def list_example_files(progress: Optional[gr.Progress] = None) -> List[str]:
"""Return up to 10 .wav paths inside repo/samples/inputs (lazy clone)."""
repo = ensure_repo(progress=progress)
wav_dir = repo / "samples" / "inputs"
files = sorted(p for p in wav_dir.glob("*.wav") if p.is_file())
return [p.as_posix() for p in files[:10]]
def load_examples(_: Any = None, progress=gr.Progress()) -> Dict[str, Any]:
"""Button/auto-load handler: populate dropdown choices and status text."""
paths = list_example_files(progress=progress)
if not paths:
return {
"choices": [],
"status": "No sample .wav files found in repo/samples/inputs.",
}
labels = [f"{i+1:02d} β€” {Path(p).name}" for i, p in enumerate(paths)]
return {
"choices": labels,
"paths": paths,
"status": f"Loaded {len(paths)} sample audios."
}
def set_example_selection(idx_label: str, paths: List[str]) -> Tuple[str, str]:
"""When user picks an example, set the audio path + a suggested prompt."""
if not idx_label or not paths:
return "", ""
try:
# label "01 β€” file.wav" -> index 0
idx = int(idx_label.split()[0]) - 1
except Exception:
idx = 0
idx = max(0, min(idx, len(paths)-1))
audio_path = paths[idx]
prompt = PROMPTS_10[idx] if idx < len(PROMPTS_10) else PROMPTS_10[-1]
return audio_path, prompt
# ========== Gradio callback ==========
def enhance_audio_ui(
audio_path: str,
prompt: str,
progress=gr.Progress(track_tqdm=True),
) -> Tuple[Optional[Tuple[int, np.ndarray]], str]:
"""
Returns (audio, message). On failure, audio=None and message=error text.
"""
try:
if not prompt:
raise gr.Error("Please provide a text prompt.")
if not audio_path:
raise gr.Error("Please upload or select an input audio file.")
wav, sr = read_audio(audio_path)
tmp_in = SPACE_ROOT / "tmp_in.wav"
tmp_out = SPACE_ROOT / "tmp_out.wav"
if tmp_out.exists():
try: tmp_out.unlink()
except Exception: pass
if progress: progress(0.06, desc="Preparing audio")
save_temp_wav(wav, sr, tmp_in)
use_gpu_call = USE_ZEROGPU or _has_cuda()
if progress: progress(0.12, desc="Starting inference")
if use_gpu_call:
ok, msg = enhance_on_gpu(tmp_in.as_posix(), prompt, tmp_out.as_posix())
else:
ok, msg = run_sonicmaster_cli(tmp_in, prompt, tmp_out, progress=progress)
if ok and tmp_out.exists() and tmp_out.stat().st_size > 0:
out_wav, out_sr = read_audio(tmp_out.as_posix())
return (out_sr, out_wav), (msg or "Done.")
else:
return None, (msg or "Inference failed without a specific error message.")
except gr.Error as e:
return None, str(e)
except Exception as e:
import traceback
return None, f"Unexpected error: {e}\n{traceback.format_exc()}"
# ========== Gradio UI ==========
with gr.Blocks(title="SonicMaster – Text-Guided Restoration & Mastering", fill_height=True) as _demo:
gr.Markdown(
"## 🎧 SonicMaster\n"
"Upload audio or **load sample audios**, write a prompt, then click **Enhance**.\n"
"- On failure, the **Status** box shows the exact error "
)
with gr.Row():
with gr.Column(scale=1):
# Sample loader (lazy)
with gr.Accordion("Sample audios (10)", open=False):
load_btn = gr.Button("πŸ“₯ Load 10 sample audios")
samples_dropdown = gr.Dropdown(choices=[], label="Pick a sample", interactive=True)
samples_state = gr.State([]) # holds absolute paths
in_audio = gr.Audio(label="Input Audio", type="filepath")
prompt = gr.Textbox(label="Text Prompt", placeholder="e.g., Reduce reverb and brighten vocals.")
run_btn = gr.Button("πŸš€ Enhance", variant="primary")
# Optional quick prompt examples (text-only)
gr.Examples(
examples=[[p] for p in [
"Reduce roominess/echo (dereverb).",
"Raise the level of the vocals.",
"Give the song a wider stereo image.",
]],
inputs=[prompt],
label="Prompt Examples",
)
with gr.Column(scale=1):
out_audio = gr.Audio(label="Enhanced Audio (output)")
status = gr.Textbox(label="Status / Messages", interactive=False, lines=8)
# --- Wire up the sample loader ---
# 1) Load samples on button click (lazy clone)
load_result = load_btn.click(
fn=load_examples,
inputs=None,
outputs=None
)
# Manually map the dict result to components via .then (Gradio v5 API)
load_result.then(lambda d: d.get("choices", []), None, samples_dropdown)
load_result.then(lambda d: d.get("paths", []), None, samples_state)
load_result.then(lambda d: d.get("status", ""), None, status)
# 2) When a sample is chosen, set audio path + suggested prompt
samples_dropdown.change(
fn=set_example_selection,
inputs=[samples_dropdown, samples_state],
outputs=[in_audio, prompt],
)
# --- Enhance button ---
run_btn.click(
fn=enhance_audio_ui,
inputs=[in_audio, prompt],
outputs=[out_audio, status],
concurrency_limit=1,
)
# Expose all common names the supervisor might look for
demo = _demo.queue(max_size=16)
iface = demo
app = demo
# Local debugging only
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)