File size: 6,562 Bytes
a59f096
7bf848e
 
 
 
 
 
 
 
 
 
50ec95a
 
 
d231354
50ec95a
 
d231354
50ec95a
 
d231354
 
50ec95a
 
 
 
 
7bf848e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2605365
7bf848e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50ec95a
 
 
 
7bf848e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50ec95a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import spaces # added
import torch
import json
from anyaccomp.inference_utils import Sing2SongInferencePipeline
import os
import random
import librosa
import numpy as np
import soundfile as sf
import gradio as gr
import time
from huggingface_hub import snapshot_download

repo_id = "amphion/anyaccomp"
base_dir = os.path.dirname(os.path.abspath(__file__))

print(f"Downloading model files from {repo_id}...")
model_dir = snapshot_download(repo_id=repo_id, local_dir=base_dir)
print(f"Model files downloaded to: {model_dir}")

CFG_PATH = os.path.join(base_dir, "config/flow_matching.json")
VOCODER_CFG_PATH = os.path.join(base_dir, "config/vocoder.json")
CHECKPOINT_PATH = os.path.join(model_dir, "pretrained/flow_matching")
VOCODER_CHECKPOINT_PATH = os.path.join(model_dir, "pretrained/vocoder")

INFER_DST = os.path.join(base_dir, "output_gradio")
EXAMPLE_DIR = os.path.join(base_dir, "example/gradio")

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

os.makedirs(INFER_DST, exist_ok=True)
acc_dst = os.path.join(INFER_DST, "accompaniment")
mixture_dst = os.path.join(INFER_DST, "mixture")
os.makedirs(acc_dst, exist_ok=True)
os.makedirs(mixture_dst, exist_ok=True)

print("Initializing AnyAccomp InferencePipeline...")
try:
    inference_pipeline = Sing2SongInferencePipeline(
        CHECKPOINT_PATH,
        CFG_PATH,
        VOCODER_CHECKPOINT_PATH,
        VOCODER_CFG_PATH,
        device=DEVICE,
    )
    inference_pipeline.sample_rate = 24000
    print("Model loaded successfully.")
except Exception as e:
    print(f"Error loading model: {e}")
    inference_pipeline = None

@spaces.GPU # added
def sing2song_inference(vocal_filepath, n_timesteps, cfg_scale, seed):
    if inference_pipeline is None:
        raise gr.Error(
            "Model could not be loaded. Please check paths and environment configuration."
        )

    if vocal_filepath is None:
        raise gr.Error("Please upload a vocal audio file.")

    if seed == -1 or seed is None:
        seed = random.randint(0, 2**32 - 1)

    seed = int(seed)
    print(f"Using seed: {seed}")

    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True

    try:
        duration = librosa.get_duration(path=vocal_filepath)
        if not (3 <= duration <= 30):
            raise gr.Error("Audio duration must be between 3 and 30 seconds.")
    except Exception as e:
        raise gr.Error(f"Cannot read audio file or get duration: {e}")

    try:
        vocal_audio, _ = librosa.load(vocal_filepath, sr=24000, mono=True)
        vocal_tensor = torch.tensor(vocal_audio).unsqueeze(0).to(DEVICE)

        vocal_mel = inference_pipeline.encode_vocal(vocal_tensor)

        with torch.cuda.amp.autocast(dtype=torch.bfloat16):
            mel = inference_pipeline.model.reverse_diffusion(
                vocal_mel=vocal_mel,
                n_timesteps=int(n_timesteps),
                cfg=cfg_scale,
            )

        mel = mel.float()
        wav = inference_pipeline._generate_audio(mel)
        wav = wav.squeeze().detach().cpu().numpy()

        wav = librosa.util.fix_length(data=wav, size=len(vocal_audio))
        mixture_wav = wav + vocal_audio

        timestamp = int(time.time())
        original_filename = os.path.basename(vocal_filepath)
        base_filename = f"{os.path.splitext(original_filename)[0]}_{timestamp}.wav"

        accompaniment_path = os.path.join(acc_dst, base_filename)
        mixture_path = os.path.join(mixture_dst, base_filename)

        sf.write(accompaniment_path, wav, 24000)
        sf.write(mixture_path, mixture_wav, 24000)

        return accompaniment_path, mixture_path, "Status: Complete!"

    except Exception as e:
        import traceback

        traceback.print_exc()
        raise gr.Error(f"An error occurred during processing: {e}")


def randomize_seed():
    return random.randint(0, 2**32 - 1)


with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # AnyAccomp: GENERALIZABLE ACCOMPANIMENT GENERATION
        Upload a 3-30 second vocal or instrument track (.wav or .mp3) and the model will generate an accompaniment for it.
        """
    )

    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### 1. Upload or Select Audio")
            vocal_input = gr.Audio(
                type="filepath",
                label="Upload Vocal or Instrument Audio",
                sources=["upload", "microphone"],
            )

            example1_path = os.path.join(EXAMPLE_DIR, "example1.mp3")
            example2_path = os.path.join(EXAMPLE_DIR, "example2.wav")
            example3_path = os.path.join(EXAMPLE_DIR, "example3.wav")
            
            gr.Examples(
                examples=[[example1_path], [example2_path], [example3_path]],
                inputs=[vocal_input],
                label="Or click an example to start",
            )
            gr.Markdown("### 2. Adjust Parameters (Optional)")
            with gr.Accordion("Advanced Settings", open=True):
                n_timesteps_slider = gr.Slider(
                    minimum=10,
                    maximum=100,
                    value=50,
                    step=1,
                    label="Inference Steps (n_timesteps)",
                )
                cfg_slider = gr.Slider(
                    minimum=1.0, maximum=10.0, value=3.0, step=0.1, label="CFG Scale"
                )

                with gr.Row():
                    seed_input = gr.Number(
                        value=-1, label="Seed (-1 for random)", precision=0
                    )
                    random_seed_btn = gr.Button("🎲")

        with gr.Column(scale=1):
            gr.Markdown("### 3. Generate and Listen to the Result")

            status_text = gr.Markdown("Status: Ready")

            accompaniment_output = gr.Audio(
                label="Generated Accompaniment", type="filepath"
            )
            mixture_output = gr.Audio(
                label="Mixture (Vocal + Accompaniment)", type="filepath"
            )

            submit_btn = gr.Button("Generate Accompaniment", variant="primary")

    submit_btn.click(
        fn=sing2song_inference,
        inputs=[vocal_input, n_timesteps_slider, cfg_slider, seed_input],
        outputs=[accompaniment_output, mixture_output, status_text],
    )

    random_seed_btn.click(fn=randomize_seed, inputs=None, outputs=seed_input)


if __name__ == "__main__":
    demo.launch()