|
|
import sys |
|
|
from pathlib import Path |
|
|
|
|
|
sys.path.append(str(Path(__file__).parent.parent)) |
|
|
|
|
|
import fev |
|
|
import pandas as pd |
|
|
import streamlit as st |
|
|
from streamlit.elements.lib.column_types import ColumnConfig |
|
|
|
|
|
from src.strings import ( |
|
|
CHRONOS_BENCHMARK_BASIC_INFO, |
|
|
CHRONOS_BENCHMARK_DETAILS, |
|
|
CITATION_CHRONOS, |
|
|
CITATION_FEV, |
|
|
CITATION_HEADER, |
|
|
PAIRWISE_BENCHMARK_DETAILS, |
|
|
get_pivot_legend, |
|
|
) |
|
|
from src.utils import ( |
|
|
construct_bar_chart, |
|
|
construct_pairwise_chart, |
|
|
construct_pivot_table, |
|
|
format_leaderboard, |
|
|
format_metric_name, |
|
|
get_metric_description, |
|
|
) |
|
|
|
|
|
st.set_page_config(layout="wide", page_title="FEV Benchmark Leaderboard", page_icon=":material/trophy:") |
|
|
|
|
|
TITLE = "<h1 style='text-align: center; font-size: 350%;'>Chronos Benchmark II</h1>" |
|
|
BASELINE_MODEL = "seasonal_naive" |
|
|
LEAKAGE_IMPUTATION_MODEL = "chronos_bolt_base" |
|
|
SORT_COL = "win_rate" |
|
|
N_RESAMPLES_FOR_CI = 1000 |
|
|
TOP_K_MODELS_TO_PLOT = 15 |
|
|
AVAILABLE_METRICS = ["WQL", "MASE"] |
|
|
SUMMARY_URLS = [ |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_arima.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_ets.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_theta.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_base.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_large.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_mini.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_small.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_tiny.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_base.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_mini.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_small.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_tiny.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/moirai_base.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/moirai_large.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/moirai_small.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/seasonal_naive.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/timesfm.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/timesfm-2.0.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/ttm-r2.csv", |
|
|
"https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/tirex.csv", |
|
|
] |
|
|
|
|
|
|
|
|
@st.cache_data() |
|
|
def load_summaries(): |
|
|
summaries = [] |
|
|
for url in SUMMARY_URLS: |
|
|
df = pd.read_csv(url) |
|
|
summaries.append(df) |
|
|
return pd.concat(summaries, ignore_index=True) |
|
|
|
|
|
|
|
|
@st.cache_data() |
|
|
def get_leaderboard(metric_name: str) -> pd.DataFrame: |
|
|
summaries = load_summaries() |
|
|
lb = fev.analysis.leaderboard( |
|
|
summaries=summaries, |
|
|
metric_column=metric_name, |
|
|
missing_strategy="impute", |
|
|
baseline_model=BASELINE_MODEL, |
|
|
leakage_imputation_model=LEAKAGE_IMPUTATION_MODEL, |
|
|
) |
|
|
lb = lb.astype("float64").reset_index() |
|
|
|
|
|
lb["skill_score"] = lb["skill_score"] * 100 |
|
|
lb["win_rate"] = lb["win_rate"] * 100 |
|
|
lb["num_failures"] = lb["num_failures"] / summaries["task_name"].nunique() * 100 |
|
|
return lb |
|
|
|
|
|
|
|
|
@st.cache_data() |
|
|
def get_pairwise(metric_name: str, included_models: list[str]) -> pd.DataFrame: |
|
|
if BASELINE_MODEL not in included_models: |
|
|
included_models = included_models + [BASELINE_MODEL] |
|
|
summaries = load_summaries() |
|
|
return ( |
|
|
fev.analysis.pairwise_comparison( |
|
|
summaries, |
|
|
included_models=included_models, |
|
|
metric_column=metric_name, |
|
|
baseline_model=BASELINE_MODEL, |
|
|
missing_strategy="impute", |
|
|
n_resamples=N_RESAMPLES_FOR_CI, |
|
|
leakage_imputation_model=LEAKAGE_IMPUTATION_MODEL, |
|
|
) |
|
|
.round(3) |
|
|
.reset_index() |
|
|
) |
|
|
|
|
|
|
|
|
with st.sidebar: |
|
|
selected_metric = st.selectbox("Evaluation Metric", options=AVAILABLE_METRICS, format_func=format_metric_name) |
|
|
st.caption(get_metric_description(selected_metric)) |
|
|
|
|
|
cols = st.columns(spec=[0.025, 0.95, 0.025]) |
|
|
|
|
|
with cols[1] as main_container: |
|
|
st.markdown(TITLE, unsafe_allow_html=True) |
|
|
|
|
|
metric_df = get_leaderboard(selected_metric).sort_values(by=SORT_COL, ascending=False) |
|
|
top_k_models = metric_df.head(TOP_K_MODELS_TO_PLOT)["model_name"].tolist() |
|
|
pairwise_df = get_pairwise(selected_metric, included_models=top_k_models) |
|
|
|
|
|
st.markdown("## :material/trophy: Leaderboard", unsafe_allow_html=True) |
|
|
st.markdown(CHRONOS_BENCHMARK_BASIC_INFO, unsafe_allow_html=True) |
|
|
df_styled = format_leaderboard(metric_df) |
|
|
st.dataframe( |
|
|
df_styled, |
|
|
use_container_width=True, |
|
|
hide_index=True, |
|
|
column_config={ |
|
|
"model_name": ColumnConfig(label="Model Name", alignment="left"), |
|
|
"win_rate": st.column_config.NumberColumn(label="Avg. win rate (%)", format="%.1f"), |
|
|
"skill_score": st.column_config.NumberColumn(label="Skill score (%)", format="%.1f"), |
|
|
"median_inference_time_s": st.column_config.NumberColumn(label="Median runtime (s)", format="%.1f"), |
|
|
"training_corpus_overlap": st.column_config.NumberColumn(label="Leakage (%)", format="%d"), |
|
|
"num_failures": st.column_config.NumberColumn(label="Failed tasks (%)", format="%.0f"), |
|
|
"zero_shot": ColumnConfig(label="Zero-shot", alignment="center"), |
|
|
"org": ColumnConfig(label="Organization", alignment="left"), |
|
|
"link": st.column_config.LinkColumn(label="Link", display_text=":material/open_in_new:"), |
|
|
}, |
|
|
) |
|
|
|
|
|
with st.expander("See details"): |
|
|
st.markdown(CHRONOS_BENCHMARK_DETAILS, unsafe_allow_html=True) |
|
|
|
|
|
st.markdown("## :material/bar_chart: Pairwise comparison", unsafe_allow_html=True) |
|
|
chart_col_1, _, chart_col_2 = st.columns(spec=[0.45, 0.1, 0.45]) |
|
|
|
|
|
with chart_col_1: |
|
|
st.altair_chart( |
|
|
construct_pairwise_chart(pairwise_df, col="win_rate", metric_name=selected_metric), |
|
|
use_container_width=True, |
|
|
) |
|
|
|
|
|
with chart_col_2: |
|
|
st.altair_chart( |
|
|
construct_pairwise_chart(pairwise_df, col="skill_score", metric_name=selected_metric), |
|
|
use_container_width=True, |
|
|
) |
|
|
|
|
|
with st.expander("See details"): |
|
|
st.markdown(PAIRWISE_BENCHMARK_DETAILS, unsafe_allow_html=True) |
|
|
|
|
|
st.markdown("## :material/table_chart: Results for individual tasks", unsafe_allow_html=True) |
|
|
with st.expander("Show detailed results"): |
|
|
st.markdown(get_pivot_legend(BASELINE_MODEL, LEAKAGE_IMPUTATION_MODEL), unsafe_allow_html=True) |
|
|
st.dataframe( |
|
|
construct_pivot_table( |
|
|
summaries=load_summaries(), |
|
|
metric_name=selected_metric, |
|
|
baseline_model=BASELINE_MODEL, |
|
|
leakage_imputation_model=LEAKAGE_IMPUTATION_MODEL, |
|
|
) |
|
|
) |
|
|
|
|
|
st.divider() |
|
|
st.markdown("### :material/format_quote: Citation", unsafe_allow_html=True) |
|
|
st.markdown(CITATION_HEADER) |
|
|
st.markdown(CITATION_FEV) |
|
|
st.markdown(CITATION_CHRONOS) |
|
|
|