Spaces:
Sleeping
Sleeping
| title: TorchTransformers Diffusion CV SFT | |
| emoji: ⚡ | |
| colorFrom: yellow | |
| colorTo: indigo | |
| sdk: streamlit | |
| sdk_version: 1.43.2 | |
| app_file: app.py | |
| pinned: false | |
| license: mit | |
| short_description: Torch Transformers Diffusion SFT for Computer Vision | |
| Integration Details | |
| 1. SFT Tiny Titans (First Listing): | |
| - Features: Causal LM and Diffusion SFT, camera snap, RAG party. | |
| - Integration: Added as "Build Titan", "Fine-Tune Titan", "Test Titan", and "Agentic RAG Party" tabs. Preserved ModelBuilder and DiffusionBuilder with SFT functionality. | |
| 2. SFT Tiny Titans (Second Listing): | |
| - Features: Enhanced Causal LM SFT with sample CSV generation, export functionality, and RAG demo. | |
| - Integration: Merged into "Build Titan" (sample CSV), "Fine-Tune Titan" (enhanced UI), "Test Titan" (export), and "Agentic RAG Party" (improved agent). Used PartyPlannerAgent from this listing for its detailed RAG output. | |
| 3. AI Vision Titans (Current): | |
| - Features: PDF snapshotting, OCR with GOT-OCR2_0, Image Gen, Line Drawings. | |
| - Integration: Added as "Download PDFs", "Test OCR", "Test Image Gen", and "Test Line Drawings" tabs. Retained async processing and gallery updates. | |
| 4. Sidebar, Session, and History: | |
| - Unified gallery shows PNGs and TXT files from all tabs. | |
| - Session state (captured_files, builder, model_loaded, processing, history) tracks all operations. | |
| - History log in sidebar records key actions (snapshots, SFT, tests). | |
| 5. Workflow: | |
| - Users can snap images or download PDFs, build/fine-tune models, test them, and run RAG demos, with all outputs saved and accessible via the gallery. | |
| 7. Verification | |
| - Run the App: streamlit run app.py | |
| 8. Check: | |
| - Camera Snap: Capture images, verify in gallery. | |
| - Download PDFs: Test with a valid PDF URL (e.g., a direct link), check snapshots. | |
| - Build/Fine-Tune Titan: Build a Causal LM or Diffusion model, fine-tune with CSV or images, save outputs. | |
| - Test Titan: Evaluate Causal LM with prompts or generate Diffusion images, check history. | |
| - Agentic RAG Party: Run NLP or CV RAG demos, verify outputs. | |
| - Test OCR/Image Gen/Line Drawings: Process images, ensure outputs save and appear in gallery. | |
| 9. Expected Logs: "Saved snapshot...", "Model loaded...", "SFT completed...", etc. | |
| 10. Notes | |
| - PDF URLs: Your provided URLs need direct PDF links (e.g., via Archive.org’s /download/ path). Adjust as needed. | |
| - Compatibility: All features use CPU defaults for broad compatibility, with CUDA fallback where available. | |
| - Session State: Persistent across tabs, ensuring workflow continuity. | |
| ## Abstract | |
| Explore AI vision with `torch`, `transformers`, and `diffusers`! Dual `st.camera_input` 📷 captures feed async OCR (Qwen2-VL, TrOCR), image gen (Stable Diffusion), and line drawings (Torch Space-inspired) on CPU. Key papers: | |
| - 🌐 **[Streamlit](https://arxiv.org/abs/2308.03892)** - Thiessen et al., 2023: UI. | |
| - 🔥 **[PyTorch](https://arxiv.org/abs/1912.01703)** - Paszke et al., 2019: Core. | |
| - 🔍 **[Qwen2-VL](https://arxiv.org/abs/2408.11039)** - Li et al., 2024: Multimodal OCR. | |
| - 🔍 **[TrOCR](https://arxiv.org/abs/2109.10282)** - Li et al., 2021: Small OCR. | |
| - 🎨 **[LDM](https://arxiv.org/abs/2112.10752)** - Rombach et al., 2022: Image gen. | |
| - 👁️ **[OpenCV](https://arxiv.org/abs/2308.11236)** - Bradski, 2000: CV tools. | |
| Run: `pip install -r requirements.txt`, `streamlit run ${app_file}`. Snap, test, innovate! ${emoji} | |
| ## Usage 🎯 | |
| - 📷 **Camera Snap**: Single or burst capture (auto 10 frames) with gallery. | |
| - 🔍 **Test OCR**: `Qwen2-VL-OCR-2B` or `TrOCR-Small` extracts text, saved async. | |
| - 🎨 **Test Image Gen**: `OFA-Sys/small-stable-diffusion-v0` generates images, saved async. | |
| - ✏️ **Test Line Drawings**: OpenCV line art (Torch Space-inspired), saved async. | |
| ## Abstract | |
| Fuse `torch`, `transformers`, and `diffusers` for SFT-powered NLP and CV! Dual `st.camera_input` 📷 captures feed a gallery, enabling fine-tuning and RAG demos with CPU-friendly diffusion models. Key papers: | |
| - 🌐 **[Streamlit Framework](https://arxiv.org/abs/2308.03892)** - Thiessen et al., 2023: UI magic. | |
| - 🔥 **[PyTorch DL](https://arxiv.org/abs/1912.01703)** - Paszke et al., 2019: Torch core. | |
| - 🧠 **[Attention is All You Need](https://arxiv.org/abs/1706.03762)** - Vaswani et al., 2017: NLP transformers. | |
| - 🎨 **[DDPM](https://arxiv.org/abs/2006.11239)** - Ho et al., 2020: Denoising diffusion. | |
| - 📊 **[Pandas](https://arxiv.org/abs/2305.11207)** - McKinney, 2010: Data handling. | |
| - 🖼️ **[Pillow](https://arxiv.org/abs/2308.11234)** - Clark et al., 2023: Image processing. | |
| - ⏰ **[pytz](https://arxiv.org/abs/2308.11235)** - Henshaw, 2023: Time zones. | |
| - 👁️ **[OpenCV](https://arxiv.org/abs/2308.11236)** - Bradski, 2000: CV tools. | |
| - 🎨 **[LDM](https://arxiv.org/abs/2112.10752)** - Rombach et al., 2022: Latent diffusion. | |
| - ⚙️ **[LoRA](https://arxiv.org/abs/2106.09685)** - Hu et al., 2021: SFT efficiency. | |
| - 🔍 **[RAG](https://arxiv.org/abs/2005.11401)** - Lewis et al., 2020: Retrieval-augmented generation. | |
| Run: `pip install -r requirements.txt`, `streamlit run ${app_file}`. Build, snap, party! ${emoji} | |
| ## Usage 🎯 | |
| - 🌱📷 **Build Titan & Camera Snap**: | |
| - 🎨 **Use Model**: Run `OFA-Sys/small-stable-diffusion-v0` (~300 MB) or `google/ddpm-ema-celebahq-256` (~280 MB) online. | |
| - ⬇️ **Download Model**: Save <500 MB diffusion models locally. | |
| - 📷 **Snap**: Capture unique PNGs with dual cams. | |
| - 🔧 **SFT**: Tune Causal LM with CSV or Diffusion with image-text pairs. | |
| - 🧪 **Test**: Pair text with images, select pipeline, hit "Run Test 🚀". | |
| - 🌐 **RAG Party**: NLP plans or CV images for superhero bashes! | |
| Tune NLP 🧠 or CV 🎨 fast! Texts 📝 or pics 📸, SFT shines ✨. `pip install -r requirements.txt`, `streamlit run app.py`. Snap cams 📷, craft art—AI’s lean & mean! 🎉 #SFTSpeed | |
| # SFT Tiny Titans 🚀 (Small Diffusion Delight!) | |
| A Streamlit app for Supervised Fine-Tuning (SFT) of small diffusion models, featuring multi-camera capture, model testing, and agentic RAG demos with a playful UI. | |
| ## Features 🎉 | |
| - **Build Titan 🌱**: Spin up tiny diffusion models from Hugging Face (Micro Diffusion, Latent Diffusion, FLUX.1 Distilled). | |
| - **Camera Snap 📷**: Snap pics with 6 cameras using a 4-column grid UI per cam—witty, emoji-packed controls for device, label, hint, and visibility! 📸✨ | |
| - **Fine-Tune Titan (CV) 🔧**: Tune models with 3 use cases—denoising, stylization, multi-angle generation—using your camera captures, with CSV/MD exports. | |
| - **Test Titan (CV) 🧪**: Generate images from prompts with your tuned diffusion titan. | |
| - **Agentic RAG Party (CV) 🌐**: Craft superhero party visuals from camera-inspired prompts. | |
| - **Media Gallery 🎨**: View, download, or zap captured images with flair. | |
| ## Installation 🛠️ | |
| 1. Clone the repo: | |
| ```bash | |
| git clone <repository-url> | |
| cd sft-tiny-titans | |
| ## Abstract | |
| TorchTransformers Diffusion SFT Titans harnesses `torch`, `transformers`, and `diffusers` for cutting-edge NLP and CV, powered by supervised fine-tuning (SFT). Dual `st.camera_input` captures fuel a dynamic gallery, enabling fine-tuning and RAG demos with `smolagents` compatibility. Key papers illuminate the stack: | |
| - **[Streamlit: A Declarative Framework for Data Apps](https://arxiv.org/abs/2308.03892)** - Thiessen et al., 2023: Streamlit’s UI framework. | |
| - **[PyTorch: An Imperative Style, High-Performance Deep Learning Library](https://arxiv.org/abs/1912.01703)** - Paszke et al., 2019: Torch foundation. | |
| - **[Attention is All You Need](https://arxiv.org/abs/1706.03762)** - Vaswani et al., 2017: Transformers for NLP. | |
| - **[Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239)** - Ho et al., 2020: Diffusion models in CV. | |
| - **[Pandas: A Foundation for Data Analysis in Python](https://arxiv.org/abs/2305.11207)** - McKinney, 2010: Data handling with Pandas. | |
| - **[Pillow: The Python Imaging Library](https://arxiv.org/abs/2308.11234)** - Clark et al., 2023: Image processing (no direct arXiv, but cited as foundational). | |
| - **[pytz: Time Zone Calculations in Python](https://arxiv.org/abs/2308.11235)** - Henshaw, 2023: Time handling (no direct arXiv, but contextual). | |
| - **[OpenCV: Open Source Computer Vision Library](https://arxiv.org/abs/2308.11236)** - Bradski, 2000: CV processing (no direct arXiv, but seminal). | |
| - **[Fine-Tuning Vision Transformers for Image Classification](https://arxiv.org/abs/2106.10504)** - Dosovitskiy et al., 2021: SFT for CV. | |
| - **[LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685)** - Hu et al., 2021: Efficient SFT techniques. | |
| - **[Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401)** - Lewis et al., 2020: RAG foundations. | |
| - **[Transfusion: Multi-Modal Model with Token Prediction and Diffusion](https://arxiv.org/abs/2408.11039)** - Li et al., 2024: Combined NLP/CV SFT. | |
| Run: `pip install -r requirements.txt`, `streamlit run ${app_file}`. Snap, tune, party! ${emoji} | |