nanochat / model.py
axiilay's picture
Create model.py
629d3bb verified
"""Nanochat model implementation and inference utilities."""
from __future__ import annotations
import json
import math
import pickle
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING
import torch
import torch.nn.functional as F
from torch import nn
if TYPE_CHECKING:
from collections.abc import Generator
@dataclass
class GPTConfig:
"""Configuration for GPT model architecture.
Attributes:
sequence_len: Maximum sequence length
vocab_size: Size of vocabulary
n_layer: Number of transformer layers
n_head: Number of attention heads
n_kv_head: Number of key-value heads
n_embd: Embedding dimension
"""
sequence_len: int = 1024
vocab_size: int = 50304
n_layer: int = 12
n_head: int = 6
n_kv_head: int = 6
n_embd: int = 768
def norm(x: torch.Tensor) -> torch.Tensor:
"""Apply RMS normalization to input tensor."""
return F.rms_norm(x, (x.size(-1),))
_EXPECTED_NDIM = 4
def apply_rotary_emb(
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
) -> torch.Tensor:
"""Apply rotary positional embeddings to input tensor.
Args:
x: Input tensor of shape (batch, seq_len, n_heads, head_dim)
cos: Cosine component of rotary embeddings
sin: Sine component of rotary embeddings
Returns:
Tensor with rotary embeddings applied
"""
assert x.ndim == _EXPECTED_NDIM
d = x.shape[3] // 2
x1, x2 = x[..., :d], x[..., d:]
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat([y1, y2], 3).to(x.dtype)
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""Repeat key/value tensors for multi-head attention.
Args:
x: Input tensor of shape (batch, n_kv_heads, seq_len, head_dim)
n_rep: Number of times to repeat
Returns:
Tensor with repeated key/value heads
"""
if n_rep == 1:
return x
bs, n_kv_heads, slen, head_dim = x.shape
return (
x[:, :, None, :, :]
.expand(bs, n_kv_heads, n_rep, slen, head_dim)
.reshape(bs, n_kv_heads * n_rep, slen, head_dim)
)
class CausalSelfAttention(nn.Module):
"""Causal self-attention with rotary position embeddings."""
def __init__(self, config: GPTConfig, layer_idx: int) -> None:
"""Initialize attention layer.
Args:
config: Model configuration
layer_idx: Layer index for KV cache
"""
super().__init__()
self.layer_idx = layer_idx
self.n_head = config.n_head
self.n_kv_head = config.n_kv_head
self.n_embd = config.n_embd
self.head_dim = self.n_embd // self.n_head
assert self.n_embd % self.n_head == 0
assert self.n_kv_head <= self.n_head
assert self.n_head % self.n_kv_head == 0
self.c_q = nn.Linear(self.n_embd, self.n_head * self.head_dim, bias=False)
self.c_k = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
self.c_v = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False)
def forward(
self,
x: torch.Tensor,
cos_sin: tuple[torch.Tensor, torch.Tensor],
kv_cache: object | None,
) -> torch.Tensor:
"""Forward pass of attention layer.
Args:
x: Input tensor
cos_sin: Tuple of (cos, sin) rotary embeddings
kv_cache: Optional KV cache for generation
Returns:
Output tensor after attention
"""
b, t, _c = x.size()
q = self.c_q(x).view(b, t, self.n_head, self.head_dim)
k = self.c_k(x).view(b, t, self.n_kv_head, self.head_dim)
v = self.c_v(x).view(b, t, self.n_kv_head, self.head_dim)
cos, sin = cos_sin
q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin)
q, k = norm(q), norm(k)
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
if kv_cache is not None:
k, v = kv_cache.insert_kv(self.layer_idx, k, v)
tq = q.size(2)
tk = k.size(2)
nrep = self.n_head // self.n_kv_head
k, v = repeat_kv(k, nrep), repeat_kv(v, nrep)
if kv_cache is None or tq == tk:
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
elif tq == 1:
y = F.scaled_dot_product_attention(q, k, v, is_causal=False)
else:
attn_mask = torch.zeros((tq, tk), dtype=torch.bool, device=q.device)
prefix_len = tk - tq
if prefix_len > 0:
attn_mask[:, :prefix_len] = True
attn_mask[:, prefix_len:] = torch.tril(
torch.ones((tq, tq), dtype=torch.bool, device=q.device),
)
y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
y = y.transpose(1, 2).contiguous().view(b, t, -1)
return self.c_proj(y)
class MLP(nn.Module):
"""Multi-layer perceptron with squared ReLU activation."""
def __init__(self, config: GPTConfig) -> None:
"""Initialize MLP layer.
Args:
config: Model configuration
"""
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass of MLP.
Args:
x: Input tensor
Returns:
Output tensor after MLP transformation
"""
x = self.c_fc(x)
x = F.relu(x).square()
return self.c_proj(x)
class Block(nn.Module):
"""Transformer block with attention and MLP."""
def __init__(self, config: GPTConfig, layer_idx: int) -> None:
"""Initialize transformer block.
Args:
config: Model configuration
layer_idx: Layer index
"""
super().__init__()
self.attn = CausalSelfAttention(config, layer_idx)
self.mlp = MLP(config)
def forward(
self,
x: torch.Tensor,
cos_sin: tuple[torch.Tensor, torch.Tensor],
kv_cache: object | None,
) -> torch.Tensor:
"""Forward pass of transformer block.
Args:
x: Input tensor
cos_sin: Tuple of (cos, sin) rotary embeddings
kv_cache: Optional KV cache for generation
Returns:
Output tensor after block transformation
"""
x = x + self.attn(norm(x), cos_sin, kv_cache)
return x + self.mlp(norm(x))
class GPT(nn.Module):
"""GPT model with rotary position embeddings."""
def __init__(self, config: GPTConfig) -> None:
"""Initialize GPT model.
Args:
config: Model configuration
"""
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(
{
"wte": nn.Embedding(config.vocab_size, config.n_embd),
"h": nn.ModuleList(
[Block(config, layer_idx) for layer_idx in range(config.n_layer)],
),
},
)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.rotary_seq_len = config.sequence_len * 10
head_dim = config.n_embd // config.n_head
cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim)
self.register_buffer("cos", cos, persistent=False)
self.register_buffer("sin", sin, persistent=False)
self.transformer.wte.to(dtype=torch.bfloat16)
def init_weights(self) -> None:
"""Initialize model weights."""
self.apply(self._init_weights)
torch.nn.init.zeros_(self.lm_head.weight)
for block in self.transformer.h:
torch.nn.init.zeros_(block.mlp.c_proj.weight)
torch.nn.init.zeros_(block.attn.c_proj.weight)
head_dim = self.config.n_embd // self.config.n_head
cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim)
self.cos, self.sin = cos, sin
def _init_weights(self, module: nn.Module) -> None:
"""Initialize weights for a single module.
Args:
module: Module to initialize
"""
if isinstance(module, nn.Linear):
fan_out = module.weight.size(0)
fan_in = module.weight.size(1)
std = 1.0 / math.sqrt(fan_in) * min(1.0, math.sqrt(fan_out / fan_in))
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=1.0)
def _precompute_rotary_embeddings(
self,
seq_len: int,
head_dim: int,
base: int = 10000,
device: torch.device | str | None = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Precompute rotary position embeddings.
Args:
seq_len: Maximum sequence length
head_dim: Dimension of attention heads
base: Base for frequency calculation
device: Device to place tensors on
Returns:
Tuple of (cos, sin) tensors for rotary embeddings
"""
if device is None:
device = self.transformer.wte.weight.device
channel_range = torch.arange(0, head_dim, 2, dtype=torch.float32, device=device)
inv_freq = 1.0 / (base ** (channel_range / head_dim))
t = torch.arange(seq_len, dtype=torch.float32, device=device)
freqs = torch.outer(t, inv_freq)
cos, sin = freqs.cos(), freqs.sin()
cos, sin = cos.bfloat16(), sin.bfloat16()
return cos[None, :, None, :], sin[None, :, None, :]
def forward(
self,
idx: torch.Tensor,
targets: torch.Tensor | None = None,
kv_cache: object | None = None,
) -> torch.Tensor:
"""Forward pass of GPT model.
Args:
idx: Input token indices
targets: Target token indices (unused in this implementation)
kv_cache: Optional KV cache for generation
Returns:
Logits for next token prediction
"""
_b, t = idx.size()
assert self.cos.size(1) >= t
t0 = 0 if kv_cache is None else kv_cache.get_pos()
cos_sin = self.cos[:, t0 : t0 + t], self.sin[:, t0 : t0 + t]
x = self.transformer.wte(idx)
x = norm(x)
for block in self.transformer.h:
x = block(x, cos_sin, kv_cache)
x = norm(x)
softcap = 15
logits = self.lm_head(x)
return softcap * torch.tanh(logits / softcap)
class NanochatModel:
"""Wrapper class for loading and running inference with the nanochat model."""
def __init__(self, model_dir: str, device: str = "cpu") -> None:
"""Initialize the NanochatModel.
Args:
model_dir: Directory containing model files
device: Device to run inference on (default: "cpu")
"""
self.device = torch.device(device)
self.model_dir = model_dir
self.model = self._load_model()
self.enc = self._load_tokenizer()
self._setup_special_tokens()
def _load_model(self) -> GPT:
"""Load the model from the model directory."""
model_dir_path = Path(self.model_dir)
model_files = list(model_dir_path.glob("model_*.pt"))
if not model_files:
msg = f"No model files found in {self.model_dir}"
raise FileNotFoundError(msg)
model_file = model_files[0]
meta_files = list(model_dir_path.glob("meta_*.json"))
if not meta_files:
msg = f"No meta files found in {self.model_dir}"
raise FileNotFoundError(msg)
meta_file = meta_files[0]
with meta_file.open() as f:
meta = json.load(f)
model_config_kwargs = meta["model_config"]
model_config = GPTConfig(**model_config_kwargs)
with torch.device("meta"):
model = GPT(model_config)
model_data = torch.load(
model_file,
map_location=self.device,
weights_only=True,
)
model_data = {k.removeprefix("_orig_mod."): v for k, v in model_data.items()}
model_data = {
k: v.float() if v.dtype == torch.bfloat16 else v
for k, v in model_data.items()
}
model.to_empty(device=self.device)
model.init_weights()
model.load_state_dict(model_data, strict=True, assign=True)
model.eval()
return model
def _load_tokenizer(self) -> object:
"""Load the tokenizer from the model directory.
Returns:
Loaded tokenizer object
"""
tokenizer_path = Path(self.model_dir) / "tokenizer.pkl"
if not tokenizer_path.exists():
msg = f"Tokenizer not found at {tokenizer_path}"
raise FileNotFoundError(msg)
with tokenizer_path.open("rb") as f:
return pickle.load(f)
def _setup_special_tokens(self) -> None:
"""Set up special token IDs for chat formatting."""
try:
try:
self.bos_token_id = self.enc.encode_single_token("<|bos|>")
except KeyError:
self.bos_token_id = self.enc.encode_single_token("<|endoftext|>")
self.user_start_id = self.enc.encode_single_token("<|user_start|>")
self.user_end_id = self.enc.encode_single_token("<|user_end|>")
self.assistant_start_id = self.enc.encode_single_token(
"<|assistant_start|>",
)
self.assistant_end_id = self.enc.encode_single_token("<|assistant_end|>")
self.stop_tokens = {self.bos_token_id, self.assistant_end_id}
except KeyError as e:
msg = f"Required special token missing from tokenizer: {e}"
raise ValueError(msg) from e
def format_prompt(self, message: str) -> list[int]:
"""Format a user message using chat format.
Args:
message: User's input message
Returns:
List of token IDs formatted for chat
"""
prompt_tokens = self.enc.encode_ordinary(message)
return [
self.bos_token_id,
self.user_start_id,
*prompt_tokens,
self.user_end_id,
self.assistant_start_id,
]
def format_conversation(self, history: list[dict[str, str]]) -> list[int]:
"""Format a multi-turn conversation using chat format.
Args:
history: List of message dictionaries with 'role' and 'content' keys
role can be 'user' or 'assistant'
Returns:
List of token IDs formatted for multi-turn chat
"""
tokens = [self.bos_token_id]
for message in history:
role = message.get("role")
content = message.get("content", "")
content_tokens = self.enc.encode_ordinary(content)
if role == "user":
tokens.extend([
self.user_start_id,
*content_tokens,
self.user_end_id,
])
elif role == "assistant":
tokens.extend([
self.assistant_start_id,
*content_tokens,
self.assistant_end_id,
])
tokens.append(self.assistant_start_id)
return tokens
def generate(
self,
prompt: str | None = None,
history: list[dict[str, str]] | None = None,
max_tokens: int = 512,
temperature: float = 0.8,
top_k: int = 50,
) -> Generator[str, None, None]:
"""Generate text from a prompt or conversation history.
Args:
prompt: The input text prompt (for single-turn)
history: List of message dicts with 'role' and 'content' (for multi-turn)
max_tokens: Maximum number of tokens to generate
temperature: Sampling temperature
top_k: Top-k sampling parameter
Yields:
Decoded token strings
"""
if history is not None:
input_ids = self.format_conversation(history)
elif prompt is not None:
input_ids = self.format_prompt(prompt)
else:
msg = "Either prompt or history must be provided"
raise ValueError(msg)
x = torch.tensor([input_ids], dtype=torch.long, device=self.device)
with torch.inference_mode():
for _ in range(max_tokens):
logits = self.model(x)
logits = logits[:, -1, :]
logits = logits / temperature
if top_k > 0:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float("inf")
probs = F.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
if next_token.item() in self.stop_tokens:
break
token_str = self.enc.decode([next_token.item()])
yield token_str
x = torch.cat([x, next_token], dim=1)