Spaces:
Runtime error
Runtime error
Commit
·
0fa63ef
1
Parent(s):
959adf1
update
Browse files- app.py +25 -12
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -6,9 +6,9 @@ import gradio as gr
|
|
| 6 |
import torch
|
| 7 |
import os
|
| 8 |
import fire
|
|
|
|
| 9 |
|
| 10 |
-
from
|
| 11 |
-
from ldm.util import add_margin
|
| 12 |
|
| 13 |
_TITLE = '''SyncDreamer: Generating Multiview-consistent Images from a Single-view Image'''
|
| 14 |
_DESCRIPTION = '''
|
|
@@ -21,6 +21,7 @@ Given a single-view image, SyncDreamer is able to generate multiview-consistent
|
|
| 21 |
_USER_GUIDE0 = "Step0: Please upload an image in the block above (or choose an example above). We use alpha values as object masks if given."
|
| 22 |
_USER_GUIDE1 = "Step1: Please select a crop size using the glider."
|
| 23 |
_USER_GUIDE2 = "Step2: Please choose a suitable elevation angle and then click the Generate button."
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
def mask_prediction(mask_predictor, image_in: Image.Image):
|
|
@@ -42,24 +43,24 @@ def resize_inputs(image_input, crop_size):
|
|
| 42 |
results = add_margin(ref_img_, size=256)
|
| 43 |
return results
|
| 44 |
|
| 45 |
-
def generate(model,
|
|
|
|
| 46 |
torch.random.manual_seed(seed)
|
| 47 |
np.random.seed(seed)
|
| 48 |
|
| 49 |
# prepare data
|
| 50 |
image_input = np.asarray(image_input)
|
| 51 |
image_input = image_input.astype(np.float32) / 255.0
|
| 52 |
-
ref_mask = image_input[:, :, 3:]
|
| 53 |
-
image_input[:, :, :3] = image_input[:, :, :3] * ref_mask + 1 - ref_mask # white background
|
| 54 |
image_input = image_input[:, :, :3] * 2.0 - 1.0
|
| 55 |
image_input = torch.from_numpy(image_input.astype(np.float32))
|
| 56 |
elevation_input = torch.from_numpy(np.asarray([np.deg2rad(elevation_input)], np.float32))
|
| 57 |
data = {"input_image": image_input, "input_elevation": elevation_input}
|
| 58 |
for k, v in data.items():
|
| 59 |
-
data[k] = v.unsqueeze(0)
|
| 60 |
data[k] = torch.repeat_interleave(data[k], sample_num, dim=0)
|
| 61 |
|
| 62 |
x_sample = model.sample(data, cfg_scale, batch_view_num)
|
|
|
|
| 63 |
|
| 64 |
B, N, _, H, W = x_sample.shape
|
| 65 |
x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5
|
|
@@ -68,14 +69,23 @@ def generate(model, seed, batch_view_num, sample_num, cfg_scale, image_input, e
|
|
| 68 |
|
| 69 |
results = []
|
| 70 |
for bi in range(B):
|
| 71 |
-
results.append(
|
| 72 |
-
results =
|
| 73 |
return Image.fromarray(results)
|
| 74 |
|
| 75 |
def run_demo():
|
| 76 |
# device = f"cuda:0" if torch.cuda.is_available() else "cpu"
|
| 77 |
# models = None # init_model(device, os.path.join(code_dir, ckpt))
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
# init sam model
|
| 81 |
mask_predictor = None # sam_init(device_idx)
|
|
@@ -114,6 +124,7 @@ def run_demo():
|
|
| 114 |
with gr.Column(scale=1):
|
| 115 |
sam_block = gr.Image(type='pil', image_mode='RGBA', label="SAM output", height=256, interactive=False)
|
| 116 |
crop_size_slider = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True)
|
|
|
|
| 117 |
|
| 118 |
with gr.Column(scale=1):
|
| 119 |
input_block = gr.Image(type='pil', image_mode='RGB', label="Input to SyncDreamer", height=256, interactive=False)
|
|
@@ -122,7 +133,7 @@ def run_demo():
|
|
| 122 |
# sample_num = gr.Slider(1, 2, 2, step=1, label='Sample Num', interactive=True, info='How many instance (16 images per instance)')
|
| 123 |
# batch_view_num = gr.Slider(1, 16, 8, step=1, label='', interactive=True)
|
| 124 |
seed = gr.Number(6033, label='Random seed', interactive=True)
|
| 125 |
-
run_btn = gr.Button('Run Generation', variant='primary', interactive=
|
| 126 |
|
| 127 |
output_block = gr.Image(type='pil', image_mode='RGB', label="Outputs of SyncDreamer", height=256, interactive=False)
|
| 128 |
|
|
@@ -132,9 +143,11 @@ def run_demo():
|
|
| 132 |
|
| 133 |
crop_size_slider.change(fn=resize_inputs, inputs=[sam_block, crop_size_slider], outputs=[input_block], queue=False)\
|
| 134 |
.success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)
|
|
|
|
|
|
|
| 135 |
|
| 136 |
-
run_btn.click(partial(generate, model,
|
| 137 |
-
.success(fn=partial(update_guide,
|
| 138 |
|
| 139 |
demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD'])
|
| 140 |
|
|
|
|
| 6 |
import torch
|
| 7 |
import os
|
| 8 |
import fire
|
| 9 |
+
from omegaconf import OmegaConf
|
| 10 |
|
| 11 |
+
from ldm.util import add_margin, instantiate_from_config
|
|
|
|
| 12 |
|
| 13 |
_TITLE = '''SyncDreamer: Generating Multiview-consistent Images from a Single-view Image'''
|
| 14 |
_DESCRIPTION = '''
|
|
|
|
| 21 |
_USER_GUIDE0 = "Step0: Please upload an image in the block above (or choose an example above). We use alpha values as object masks if given."
|
| 22 |
_USER_GUIDE1 = "Step1: Please select a crop size using the glider."
|
| 23 |
_USER_GUIDE2 = "Step2: Please choose a suitable elevation angle and then click the Generate button."
|
| 24 |
+
_USER_GUIDE3 = "Generated multiview images are shown below!"
|
| 25 |
|
| 26 |
|
| 27 |
def mask_prediction(mask_predictor, image_in: Image.Image):
|
|
|
|
| 43 |
results = add_margin(ref_img_, size=256)
|
| 44 |
return results
|
| 45 |
|
| 46 |
+
def generate(model, batch_view_num, sample_num, cfg_scale, seed, image_input, elevation_input):
|
| 47 |
+
seed=int(seed)
|
| 48 |
torch.random.manual_seed(seed)
|
| 49 |
np.random.seed(seed)
|
| 50 |
|
| 51 |
# prepare data
|
| 52 |
image_input = np.asarray(image_input)
|
| 53 |
image_input = image_input.astype(np.float32) / 255.0
|
|
|
|
|
|
|
| 54 |
image_input = image_input[:, :, :3] * 2.0 - 1.0
|
| 55 |
image_input = torch.from_numpy(image_input.astype(np.float32))
|
| 56 |
elevation_input = torch.from_numpy(np.asarray([np.deg2rad(elevation_input)], np.float32))
|
| 57 |
data = {"input_image": image_input, "input_elevation": elevation_input}
|
| 58 |
for k, v in data.items():
|
| 59 |
+
data[k] = v.unsqueeze(0)#.cuda()
|
| 60 |
data[k] = torch.repeat_interleave(data[k], sample_num, dim=0)
|
| 61 |
|
| 62 |
x_sample = model.sample(data, cfg_scale, batch_view_num)
|
| 63 |
+
# x_sample = torch.zeros(sample_num, 16, 3, 256, 256)
|
| 64 |
|
| 65 |
B, N, _, H, W = x_sample.shape
|
| 66 |
x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5
|
|
|
|
| 69 |
|
| 70 |
results = []
|
| 71 |
for bi in range(B):
|
| 72 |
+
results.append(np.concatenate([x_sample[bi,ni] for ni in range(N)], 1))
|
| 73 |
+
results = np.concatenate(results, 0)
|
| 74 |
return Image.fromarray(results)
|
| 75 |
|
| 76 |
def run_demo():
|
| 77 |
# device = f"cuda:0" if torch.cuda.is_available() else "cpu"
|
| 78 |
# models = None # init_model(device, os.path.join(code_dir, ckpt))
|
| 79 |
+
cfg = 'configs/syncdreamer.yaml'
|
| 80 |
+
ckpt = 'ckpt/syncdreamer-pretrain.ckpt'
|
| 81 |
+
config = OmegaConf.load(cfg)
|
| 82 |
+
# model = None
|
| 83 |
+
model = instantiate_from_config(config.model)
|
| 84 |
+
print(f'loading model from {ckpt} ...')
|
| 85 |
+
ckpt = torch.load(ckpt,map_location='cpu')
|
| 86 |
+
model.load_state_dict(ckpt['state_dict'], strict=True)
|
| 87 |
+
model = model.cuda().eval()
|
| 88 |
+
del ckpt
|
| 89 |
|
| 90 |
# init sam model
|
| 91 |
mask_predictor = None # sam_init(device_idx)
|
|
|
|
| 124 |
with gr.Column(scale=1):
|
| 125 |
sam_block = gr.Image(type='pil', image_mode='RGBA', label="SAM output", height=256, interactive=False)
|
| 126 |
crop_size_slider = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True)
|
| 127 |
+
crop_btn = gr.Button('Crop the image', variant='primary', interactive=True)
|
| 128 |
|
| 129 |
with gr.Column(scale=1):
|
| 130 |
input_block = gr.Image(type='pil', image_mode='RGB', label="Input to SyncDreamer", height=256, interactive=False)
|
|
|
|
| 133 |
# sample_num = gr.Slider(1, 2, 2, step=1, label='Sample Num', interactive=True, info='How many instance (16 images per instance)')
|
| 134 |
# batch_view_num = gr.Slider(1, 16, 8, step=1, label='', interactive=True)
|
| 135 |
seed = gr.Number(6033, label='Random seed', interactive=True)
|
| 136 |
+
run_btn = gr.Button('Run Generation', variant='primary', interactive=True)
|
| 137 |
|
| 138 |
output_block = gr.Image(type='pil', image_mode='RGB', label="Outputs of SyncDreamer", height=256, interactive=False)
|
| 139 |
|
|
|
|
| 143 |
|
| 144 |
crop_size_slider.change(fn=resize_inputs, inputs=[sam_block, crop_size_slider], outputs=[input_block], queue=False)\
|
| 145 |
.success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)
|
| 146 |
+
crop_btn.click(fn=resize_inputs, inputs=[sam_block, crop_size_slider], outputs=[input_block], queue=False)\
|
| 147 |
+
.success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)
|
| 148 |
|
| 149 |
+
run_btn.click(partial(generate, model, 16, 1), inputs=[cfg_scale, seed, input_block, elevation], outputs=[output_block], queue=False)\
|
| 150 |
+
.success(fn=partial(update_guide, _USER_GUIDE3), outputs=[guide_text], queue=False)
|
| 151 |
|
| 152 |
demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD'])
|
| 153 |
|
requirements.txt
CHANGED
|
@@ -19,4 +19,5 @@ trimesh
|
|
| 19 |
easydict
|
| 20 |
nerfacc
|
| 21 |
imageio-ffmpeg==0.4.7
|
| 22 |
-
|
|
|
|
|
|
| 19 |
easydict
|
| 20 |
nerfacc
|
| 21 |
imageio-ffmpeg==0.4.7
|
| 22 |
+
fire
|
| 23 |
+
git+https://github.com/openai/CLIP.git
|