bitsnaps's picture
Update app.py
c3933bc verified
import os
import io
import json
import uuid
import base64
import time
import random
import math
from typing import List, Dict, Tuple, Optional
import gradio as gr
import spaces # Required for ZeroGPU Spaces (@spaces.GPU)
# We use the official Ollama Python client for convenience
# It respects the OLLAMA_HOST env var, but we will also allow overriding via UI.
try:
from ollama import Client
except Exception as e:
raise RuntimeError(
"Failed to import the 'ollama' Python client. Ensure it's in requirements.txt."
) from e
DEFAULT_PORT = int(os.getenv("PORT", 7860))
DEFAULT_OLLAMA_HOST = os.getenv("OLLAMA_HOST", "").strip() or os.getenv("OLLAMA_BASE_URL", "").strip() or ""
DEFAULT_MODEL = os.getenv("OLLAMA_MODEL", "llama3.1")
APP_TITLE = "Ollama Chat (Gradio + Docker)"
APP_DESCRIPTION = """
A lightweight, fully functional chat UI for Ollama, designed to run on Hugging Face Spaces (Docker).
- Bring your own Ollama host (set OLLAMA_HOST in repo secrets or via the UI).
- Streamed responses, model management (list/pull), and basic vision support (image input).
- Compatible with Spaces ZeroGPU via a @spaces.GPU-decorated function (see GPU Tools panel).
"""
def ensure_scheme(host: str) -> str:
if not host:
return host
host = host.strip()
if not host.startswith(("http://", "https://")):
host = "http://" + host
# remove trailing slashes
while host.endswith("/"):
host = host[:-1]
return host
def get_client(host: str) -> Client:
host = ensure_scheme(host)
if not host:
# fall back to environment-configured client; Client() picks up OLLAMA_HOST if set
return Client()
return Client(host=host)
def list_models(host: str) -> Tuple[List[str], Optional[str]]:
try:
client = get_client(host)
data = client.list() # {'models': [{'name': 'llama3:latest', ...}, ...]}
names = sorted(m.get("name", "") for m in data.get("models", []) if m.get("name"))
return names, None
except Exception as e:
return [], f"Unable to list models from {host or '(env default)'}: {e}"
def test_connection(host: str) -> Tuple[bool, str]:
names, err = list_models(host)
if err:
return False, err
if not names:
return True, f"Connected to {host or '(env default)'} but no models found. Pull one to continue."
return True, f"Connected to {host or '(env default)'}; found {len(names)} models."
def show_model(host: str, model: str) -> Tuple[Optional[dict], Optional[str]]:
try:
client = get_client(host)
info = client.show(model=model)
return info, None
except Exception as e:
return None, f"Unable to show model '{model}': {e}"
def pull_model(host: str, model: str):
"""
Generator that pulls a model on the remote Ollama host, yielding progress strings.
"""
if not model:
yield "Provide a model name to pull (e.g., llama3.1, mistral, qwen2.5:latest)"
return
try:
client = get_client(host)
already, _ = show_model(host, model)
if already:
yield f"Model '{model}' already present on the host."
return
yield f"Pulling '{model}' from registry..."
for part in client.pull(model=model, stream=True):
# part has keys: status, digest, total, completed, etc.
status = part.get("status", "")
total = part.get("total", 0)
completed = part.get("completed", 0)
pct = f"{(completed / total * 100):.1f}%" if total else ""
line = status
if pct:
line += f" ({pct})"
yield line
yield f"Finished pulling '{model}'."
except Exception as e:
yield f"Error pulling '{model}': {e}"
def encode_image_to_base64(path: str) -> Optional[str]:
try:
with open(path, "rb") as f:
return base64.b64encode(f.read()).decode("utf-8")
except Exception:
return None
def build_ollama_messages(
system_prompt: str,
convo_messages: List[Dict], # stored chat history as Ollama-style messages
user_text: str,
image_paths: Optional[List[str]] = None,
) -> List[Dict]:
"""
Returns the full message list to send to Ollama, including system prompt (if provided),
past conversation, and the new user message.
"""
messages = []
if system_prompt.strip():
messages.append({"role": "system", "content": system_prompt.strip()})
messages.extend(convo_messages or [])
msg: Dict = {"role": "user", "content": user_text or ""}
if image_paths:
images_b64 = []
for p in image_paths:
b64 = encode_image_to_base64(p)
if b64:
images_b64.append(b64)
if images_b64:
msg["images"] = images_b64
messages.append(msg)
return messages
def messages_for_chatbot(
text: str,
image_paths: Optional[List[str]] = None,
role: str = "user",
) -> Dict:
"""
Build a Gradio Chatbot message in "messages" mode:
{"role": "user"|"assistant", "content": [{"type":"text","text":...}, {"type":"image","image":<PIL.Image>}, ...]}
"""
content = []
t = (text or "").strip()
if t:
content.append({"type": "text", "text": t})
if image_paths:
# Only embed small previews; Gradio will load images from file path.
for p in image_paths:
try:
# Gradio accepts PIL.Image or path. Provide path for simplicity.
content.append({"type": "image", "image": p})
except Exception:
continue
return {"role": role, "content": content if content else [{"type": "text", "text": ""}]}
def stream_chat(
host: str,
model: str,
system_prompt: str,
temperature: float,
top_p: float,
top_k: int,
repeat_penalty: float,
num_ctx: int,
max_tokens: Optional[int],
seed: Optional[int],
convo_messages: List[Dict],
chatbot_history: List[Dict],
user_text: str,
image_files: Optional[List[str]],
):
"""
Stream a chat completion from Ollama and update Gradio Chatbot incrementally.
"""
# 1) Add user message to chatbot and state
user_msg_for_bot = messages_for_chatbot(user_text, image_files, role="user")
chatbot_history = chatbot_history + [user_msg_for_bot]
# 2) Build messages for Ollama
ollama_messages = build_ollama_messages(system_prompt, convo_messages, user_text, image_files)
# 3) Prepare options
options = {
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repeat_penalty": repeat_penalty,
"num_ctx": num_ctx,
}
if max_tokens is not None and max_tokens > 0:
# Some backends expect "num_predict"; ensure compatibility
options["num_predict"] = max_tokens
if seed is not None:
options["seed"] = seed
# 4) Start streaming
client = get_client(host)
assistant_text_accum = ""
start_time = time.time()
# Prepare assistant placeholder in Chatbot
assistant_msg_for_bot = messages_for_chatbot("", None, role="assistant")
chatbot_history = chatbot_history + [assistant_msg_for_bot]
status_md = f"Model: {model} | Host: {ensure_scheme(host) or '(env default)'} | Streaming..."
# Initial yield to display user msg and assistant placeholder
yield chatbot_history, status_md, convo_messages
try:
for part in client.chat(
model=model,
messages=ollama_messages,
stream=True,
options=options,
):
msg = part.get("message", {}) or {}
delta = msg.get("content", "")
if delta:
assistant_text_accum += delta
chatbot_history[-1] = messages_for_chatbot(assistant_text_accum, None, role="assistant")
done = part.get("done", False)
if done:
eval_count = part.get("eval_count", 0)
prompt_eval_count = part.get("prompt_eval_count", 0)
total = time.time() - start_time
tok_s = (eval_count / total) if total > 0 else 0.0
status_md = (
f"Model: {model} | Host: {ensure_scheme(host) or '(env default)'} | "
f"Prompt tokens: {prompt_eval_count} | Output tokens: {eval_count} | "
f"Time: {total:.2f}s | Speed: {tok_s:.1f} tok/s"
)
yield chatbot_history, status_md, convo_messages
# 5) Save to conversation state: add the final user+assistant to convo_messages
convo_messages = convo_messages + [
{
"role": "user",
"content": user_text or "",
**(
{
"images": [
b for p in (image_files or [])
for b in ([encode_image_to_base64(p)] if encode_image_to_base64(p) else [])
]
} if image_files else {}
),
},
{"role": "assistant", "content": assistant_text_accum},
]
yield chatbot_history, status_md, convo_messages
except Exception as e:
err_msg = f"Error during generation: {e}"
chatbot_history[-1] = messages_for_chatbot(err_msg, None, role="assistant")
yield chatbot_history, err_msg, convo_messages
def clear_conversation():
return [], [], ""
def export_conversation(history: List[Dict], convo_messages: List[Dict]) -> Tuple[str, str]:
export_blob = {
"chat_messages": history,
"ollama_messages": convo_messages,
"meta": {
"title": APP_TITLE,
"exported_at": time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime()),
"version": "1.1",
},
}
path = f"chat_export_{int(time.time())}.json"
with open(path, "w", encoding="utf-8") as f:
json.dump(export_blob, f, ensure_ascii=False, indent=2)
return path, f"Exported {len(history)} messages to {path}"
# ---------------------- ZeroGPU support: define a GPU-decorated function ----------------------
@spaces.GPU
def gpu_ping(workload: int = 256) -> dict:
"""
Minimal function to satisfy ZeroGPU Spaces requirement and optionally exercise the GPU.
If torch with CUDA is available, perform a tiny matmul on GPU; otherwise do a CPU loop.
"""
t0 = time.time()
# Light CPU math as fallback
acc = 0.0
for i in range(max(1, workload)):
x = random.random() * 1000.0
# harmless math; avoids dependency on numpy
s = math.sin(x)
c = math.cos(x)
t = math.tan(x) if abs(math.cos(x)) > 1e-9 else 1.0
acc += s * c / t
info = {"mode": "cpu", "ops": workload}
# Optional CUDA check (torch not required)
try:
import torch # noqa: F401
if torch.cuda.is_available():
a = torch.randn((256, 256), device="cuda")
b = torch.mm(a, a)
_ = float(b.mean().item())
info["mode"] = "cuda"
info["device"] = torch.cuda.get_device_name(torch.cuda.current_device())
info["cuda"] = True
else:
info["cuda"] = False
except Exception:
# torch not installed or other issue; still fine for ZeroGPU detection
info["cuda"] = "unavailable"
elapsed = time.time() - t0
return {"ok": True, "elapsed_s": round(elapsed, 4), "acc_checksum": float(acc % 1.0), "info": info}
# ---------------------------------------------------------------------------------------------
def ui() -> gr.Blocks:
with gr.Blocks(title=APP_TITLE, theme=gr.themes.Soft()) as demo:
gr.Markdown(f"# {APP_TITLE}")
gr.Markdown(APP_DESCRIPTION)
# States
state_convo = gr.State([]) # stores ollama-format convo (no system prompt)
state_history = gr.State([]) # stores Chatbot messages (messages-mode)
state_system_prompt = gr.State("")
state_host = gr.State(DEFAULT_OLLAMA_HOST)
state_session = gr.State(str(uuid.uuid4()))
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="Chat", type="messages", height=520, avatar_images=(None, None))
with gr.Row():
txt = gr.Textbox(
label="Your message",
placeholder="Ask anything...",
autofocus=True,
scale=4,
)
image_files = gr.Files(
label="Optional image(s)",
file_types=["image"],
type="filepath",
visible=True,
)
with gr.Row():
send_btn = gr.Button("Send", variant="primary")
stop_btn = gr.Button("Stop")
clear_btn = gr.Button("Clear")
export_btn = gr.Button("Export")
status = gr.Markdown("Ready.", elem_id="status_box")
with gr.Column(scale=2):
gr.Markdown("## Connection")
host_in = gr.Textbox(
label="Ollama Host URL",
placeholder="http://127.0.0.1:11434 (or leave blank to use server env OLLAMA_HOST)",
value=DEFAULT_OLLAMA_HOST,
)
with gr.Row():
test_btn = gr.Button("Test Connection")
refresh_models_btn = gr.Button("Refresh Models")
models_dd = gr.Dropdown(
choices=[],
value=None,
label="Model",
allow_custom_value=True,
info="Select a model from the server or type a name (e.g., llama3.1, mistral, phi4:latest)",
)
pull_model_txt = gr.Textbox(
label="Pull Model (by name)",
placeholder="e.g., llama3.1, mistral, qwen2.5:latest",
)
pull_btn = gr.Button("Pull Model")
pull_log = gr.Textbox(label="Pull Progress", interactive=False, lines=6)
gr.Markdown("## System Prompt")
sys_prompt = gr.Textbox(
label="System Prompt",
placeholder="You are a helpful assistant...",
lines=4,
value=os.getenv("SYSTEM_PROMPT", ""),
)
gr.Markdown("## Generation Settings")
with gr.Row():
temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.05, label="Temperature")
top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.01, label="Top-p")
with gr.Row():
top_k = gr.Slider(0, 200, value=40, step=1, label="Top-k")
repeat_penalty = gr.Slider(0.0, 2.0, value=1.1, step=0.01, label="Repeat Penalty")
with gr.Row():
num_ctx = gr.Slider(256, 8192, value=4096, step=256, label="Context Window (num_ctx)")
max_tokens = gr.Slider(0, 8192, value=0, step=16, label="Max New Tokens (0 = auto)")
seed = gr.Number(value=None, label="Seed (optional)", precision=0)
gr.Markdown("## GPU Tools (ZeroGPU compatible)")
with gr.Row():
gpu_workload = gr.Slider(64, 4096, value=256, step=64, label="GPU Ping Workload")
with gr.Row():
gpu_btn = gr.Button("Run GPU Ping")
gpu_out = gr.Textbox(label="GPU Ping Result", lines=6, interactive=False)
# Wire up actions
def _on_load():
# Initialize models list based on default host
host = DEFAULT_OLLAMA_HOST
names, err = list_models(host)
if err:
status_msg = f"Note: {err}"
else:
status_msg = f"Loaded {len(names)} models from {ensure_scheme(host) or '(env default)'}."
# If DEFAULT_MODEL is available select it otherwise pick first
value = DEFAULT_MODEL if DEFAULT_MODEL in names else (names[0] if names else None)
return (
names, value, # models_dd
host, # host_in
status_msg, # status
[], [], "", # state_history, state_convo, system prompt state
)
load_outputs = [
models_dd, models_dd,
host_in,
status,
state_history, state_convo, state_system_prompt
]
demo.load(_on_load, outputs=load_outputs)
# When host changes, update state_host
def set_host(h):
return ensure_scheme(h)
host_in.change(set_host, inputs=host_in, outputs=state_host)
# Test connection
def _test(h):
ok, msg = test_connection(h)
# refresh models if ok
names, err = list_models(h) if ok else ([], None)
model_val = models_dd.value if ok and models_dd.value in names else (names[0] if names else None)
if err:
msg += f"\nAlso: {err}"
return names, model_val, msg
test_btn.click(_test, inputs=host_in, outputs=[models_dd, models_dd, status])
# Refresh models
refresh_models_btn.click(_test, inputs=host_in, outputs=[models_dd, models_dd, status])
# Pull model progress
def _pull(h, name):
if not name:
yield "Please enter a model name to pull."
return
for line in pull_model(h, name.strip()):
yield line
pull_btn.click(_pull, inputs=[host_in, pull_model_txt], outputs=pull_log)
# Clear conversation
clear_btn.click(clear_conversation, outputs=[chatbot, state_convo, status])
# Export
export_file = gr.File(label="Download Conversation", visible=True)
export_btn.click(export_conversation, inputs=[state_history, state_convo], outputs=[export_file, status])
# Send/Stream
def _submit(
h, m, sp, t, tp, tk, rp, ctx, mx, sd, convo, history, text, files
):
# Convert mx slider 0 -> None (auto)
mx_int = int(mx) if mx and int(mx) > 0 else None
sd_int = int(sd) if sd is not None else None
yield from stream_chat(
host=h,
model=m or DEFAULT_MODEL,
system_prompt=sp or "",
temperature=float(t),
top_p=float(tp),
top_k=int(tk),
repeat_penalty=float(rp),
num_ctx=int(ctx),
max_tokens=mx_int,
seed=sd_int,
convo_messages=convo,
chatbot_history=history,
user_text=text,
image_files=files,
)
submit_event = send_btn.click(
_submit,
inputs=[host_in, models_dd, sys_prompt, temperature, top_p, top_k, repeat_penalty, num_ctx, max_tokens, seed, state_convo, state_history, txt, image_files],
outputs=[chatbot, status, state_convo],
)
# Pressing Enter in the textbox also triggers submit
txt.submit(
_submit,
inputs=[host_in, models_dd, sys_prompt, temperature, top_p, top_k, repeat_penalty, num_ctx, max_tokens, seed, state_convo, state_history, txt, image_files],
outputs=[chatbot, status, state_convo],
)
# Stop streaming
stop_btn.click(None, None, None, cancels=[submit_event])
# After successful send, clear the input box and keep images cleared
def _post_send():
return "", None
send_btn.click(_post_send, outputs=[txt, image_files])
txt.submit(_post_send, outputs=[txt, image_files])
# Keep Chatbot state in sync (so export works)
def _sync_chatbot_state(history):
return history
chatbot.change(_sync_chatbot_state, inputs=chatbot, outputs=state_history)
# GPU Ping hook
def _gpu_ping_ui(n):
try:
res = gpu_ping(int(n))
try:
return json.dumps(res, indent=2)
except Exception:
return str(res)
except Exception as e:
return f"GPU ping failed: {e}"
gpu_btn.click(_gpu_ping_ui, inputs=[gpu_workload], outputs=[gpu_out])
return demo
if __name__ == "__main__":
demo = ui()
demo.queue(default_concurrency_limit=10)
demo.launch(server_name="0.0.0.0", server_port=DEFAULT_PORT, show_api=True, ssr_mode=False)