Update app.py
Browse files
app.py
CHANGED
|
@@ -110,8 +110,8 @@ def predict_image(img, confidence_threshold):
|
|
| 110 |
logits_3 = outputs_3.logits
|
| 111 |
probabilities_3 = softmax(logits_3.cpu().numpy()[0])
|
| 112 |
result_3 = {
|
| 113 |
-
labels_3[1]: float(probabilities_3[1]) # Real
|
| 114 |
-
labels_3[0]: float(probabilities_3[0])
|
| 115 |
}
|
| 116 |
print(result_3)
|
| 117 |
# Ensure the result dictionary contains all class names
|
|
@@ -136,8 +136,8 @@ def predict_image(img, confidence_threshold):
|
|
| 136 |
logits_4 = outputs_4.logits
|
| 137 |
probabilities_4 = softmax(logits_4.cpu().numpy()[0])
|
| 138 |
result_4 = {
|
| 139 |
-
labels_4[1]: float(probabilities_4[1]) # Real
|
| 140 |
-
labels_4[0]: float(probabilities_4[0])
|
| 141 |
}
|
| 142 |
print(result_4)
|
| 143 |
# Ensure the result dictionary contains all class names
|
|
@@ -156,7 +156,12 @@ def predict_image(img, confidence_threshold):
|
|
| 156 |
|
| 157 |
try:
|
| 158 |
img_bytes = convert_pil_to_bytes(img_pil)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
response5_raw = call_inference(img_bytes)
|
|
|
|
| 160 |
response5 = response5_raw.json()
|
| 161 |
print(response5)
|
| 162 |
label_5 = f"Result: {response5}"
|
|
@@ -215,11 +220,11 @@ with gr.Blocks() as iface:
|
|
| 215 |
gr.Markdown("# AI Generated Image Classification")
|
| 216 |
|
| 217 |
with gr.Row():
|
| 218 |
-
with gr.Column():
|
| 219 |
image_input = gr.Image(label="Upload Image to Analyze", sources=['upload'], type='pil')
|
| 220 |
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
|
| 221 |
inputs = [image_input, confidence_slider]
|
| 222 |
-
with gr.Column():
|
| 223 |
image_output = gr.Image(label="Processed Image")
|
| 224 |
# Custom HTML component to display results in 5 columns
|
| 225 |
results_html = gr.HTML(label="Model Predictions")
|
|
|
|
| 110 |
logits_3 = outputs_3.logits
|
| 111 |
probabilities_3 = softmax(logits_3.cpu().numpy()[0])
|
| 112 |
result_3 = {
|
| 113 |
+
labels_3[1]: float(probabilities_3[1]), # Real
|
| 114 |
+
labels_3[0]: float(probabilities_3[0]) # AI
|
| 115 |
}
|
| 116 |
print(result_3)
|
| 117 |
# Ensure the result dictionary contains all class names
|
|
|
|
| 136 |
logits_4 = outputs_4.logits
|
| 137 |
probabilities_4 = softmax(logits_4.cpu().numpy()[0])
|
| 138 |
result_4 = {
|
| 139 |
+
labels_4[1]: float(probabilities_4[1]), # Real
|
| 140 |
+
labels_4[0]: float(probabilities_4[0]) # AI
|
| 141 |
}
|
| 142 |
print(result_4)
|
| 143 |
# Ensure the result dictionary contains all class names
|
|
|
|
| 156 |
|
| 157 |
try:
|
| 158 |
img_bytes = convert_pil_to_bytes(img_pil)
|
| 159 |
+
|
| 160 |
+
print(img_pill)
|
| 161 |
+
print(img_bytes)
|
| 162 |
+
|
| 163 |
response5_raw = call_inference(img_bytes)
|
| 164 |
+
print(response5_raw)
|
| 165 |
response5 = response5_raw.json()
|
| 166 |
print(response5)
|
| 167 |
label_5 = f"Result: {response5}"
|
|
|
|
| 220 |
gr.Markdown("# AI Generated Image Classification")
|
| 221 |
|
| 222 |
with gr.Row():
|
| 223 |
+
with gr.Column(scale=2):
|
| 224 |
image_input = gr.Image(label="Upload Image to Analyze", sources=['upload'], type='pil')
|
| 225 |
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
|
| 226 |
inputs = [image_input, confidence_slider]
|
| 227 |
+
with gr.Column(scale=3):
|
| 228 |
image_output = gr.Image(label="Processed Image")
|
| 229 |
# Custom HTML component to display results in 5 columns
|
| 230 |
results_html = gr.HTML(label="Model Predictions")
|