zixinz
Add application file
5a0778e
import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, GemmaConfig, GemmaForCausalLM
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
Lumina2Text2ImgPipeline,
Lumina2Transformer2DModel,
)
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import PipelineTesterMixin
class Lumina2Text2ImgPipelinePipelineFastTests(unittest.TestCase, PipelineTesterMixin):
pipeline_class = Lumina2Text2ImgPipeline
params = frozenset(
[
"prompt",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
]
)
batch_params = frozenset(["prompt", "negative_prompt"])
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
supports_dduf = False
test_xformers_attention = False
test_layerwise_casting = True
def get_dummy_components(self):
torch.manual_seed(0)
transformer = Lumina2Transformer2DModel(
sample_size=4,
patch_size=2,
in_channels=4,
hidden_size=8,
num_layers=2,
num_attention_heads=1,
num_kv_heads=1,
multiple_of=16,
ffn_dim_multiplier=None,
norm_eps=1e-5,
scaling_factor=1.0,
axes_dim_rope=[4, 2, 2],
cap_feat_dim=8,
)
torch.manual_seed(0)
vae = AutoencoderKL(
sample_size=32,
in_channels=3,
out_channels=3,
block_out_channels=(4,),
layers_per_block=1,
latent_channels=4,
norm_num_groups=1,
use_quant_conv=False,
use_post_quant_conv=False,
shift_factor=0.0609,
scaling_factor=1.5035,
)
scheduler = FlowMatchEulerDiscreteScheduler()
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")
torch.manual_seed(0)
config = GemmaConfig(
head_dim=2,
hidden_size=8,
intermediate_size=37,
num_attention_heads=4,
num_hidden_layers=2,
num_key_value_heads=4,
)
text_encoder = GemmaForCausalLM(config)
components = {
"transformer": transformer.eval(),
"vae": vae.eval(),
"scheduler": scheduler,
"text_encoder": text_encoder.eval(),
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"height": 32,
"width": 32,
"output_type": "np",
}
return inputs
def test_lumina_prompt_embeds(self):
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
output_with_prompt = pipe(**inputs).images[0]
inputs = self.get_dummy_inputs(torch_device)
prompt = inputs.pop("prompt")
do_classifier_free_guidance = inputs["guidance_scale"] > 1
(
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
) = pipe.encode_prompt(
prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
device=torch_device,
)
output_with_embeds = pipe(
prompt_embeds=prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
**inputs,
).images[0]
max_diff = np.abs(output_with_prompt - output_with_embeds).max()
assert max_diff < 1e-4